The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP.
Fig. 2. The MORF family of proteins contains nine genes and a potential pseudogene in A. thaliana. (A) The cladogram of similarities between the MORF proteins shows that the plastid editing factors MORF2 and MORF9 are rather distant from each other and more similar to the mitochondrial proteins MORF3 and MORF1, respectively. Predictions (marked mt or cp) and experimental data obtained by GFP-fusion protein localization (only MORF2) or proteomics MS data (marked with an asterisk) for the respective organellar locations are indicated. The MORF8 protein encoded by At3g15000 has been found in mitochondria in three independent assays. Proteins investigated here for their function are boxed. The conserved ∼100-amino acids domain is shaded; the other sequences show much less conservation (SI Appendix, Fig. S2). The potential pseudogene (At1g53260) contains only the C-terminal part of this conserved region. (B) Exon structures of the MORF3, MORF4 and MORF6 genes are similar to the MORF1 locus and contribute similar fragments but differ in their C-terminal extensions. MORF3 is a mitochondrial editing factor involved at more than 40 sites. Locations of the T-DNA insertions in mutants morf3-1, morf4-1, and morf6-1 are shown. LB denotes the location of the left border of the T-DNA. (C) Numbers of editing sites affected by T-DNA insertions in the respective MORF genes. In mutants morf4-1 and morf6-1, only one noncoding site each shows somewhat reduced editing.
RNA editing alters the identity of nucleotides in RNA molecules such that the information for a protein in the mRNA differs from the prediction of the genomic DNA. In chloroplasts and mitochondria of flowering plants, RNA editing changes C nucleotides to U nucleotides; in ferns and mosses, it also changes U to C. The approximately 500 editing sites in mitochondria and 40 editing sites in plastids of flowering plants are individually addressed by specific proteins, genes for which are amplified in plant species with organellar RNA editing. These proteins contain repeat elements that bind to cognate RNA sequence motifs just 5' to the edited nucleotide. In flowering plants, the site-specific proteins interact selectively with individual members of a different, smaller family of proteins. These latter proteins may be connectors between the site-specific proteins and the as yet unknown deaminating enzymatic activity.
Summary The central dogma in biology defines the flow of genetic information from DNA to RNA to protein. Accordingly, RNA molecules generally accurately follow the sequences of the genes from which they are transcribed. This rule is transgressed by RNA editing, which creates RNA products that differ from their DNA templates. Analyses of the RNA landscapes of terrestrial plants have indicated that RNA editing (in the form of C‐U base transitions) is highly prevalent within organelles (that is, mitochondria and chloroplasts). Numerous C→U conversions (and in some plants also U→C) alter the coding sequences of many of the organellar transcripts and can also produce translatable mRNAs by creating AUG start sites or eliminating premature stop codons, or affect the RNA structure, influence splicing and alter the stability of RNAs. RNA‐binding proteins are at the heart of post‐transcriptional RNA expression. The C‐to‐U RNA editing process in plant mitochondria involves numerous nuclear‐encoded factors, many of which have been identified as pentatricopeptide repeat (PPR) proteins that target editing sites in a sequence‐specific manner. In this review we report on major discoveries on RNA editing in plant organelles, since it was first documented 30 years ago.
Pentatricopeptide repeat (PPR) proteins with an E domain have been identified as specific factors for C to U RNA editing in plant organelles. These PPR proteins bind to a unique sequence motif 5′ of their target editing sites. Recently, involvement of a combinatorial amino acid code in the P (normal length) and S type (short) PPR domains in sequence specific RNA binding was reported. PPR proteins involved in RNA editing, however, contain not only P and S motifs but also their long variants L (long) and L2 (long2) and the S2 (short2) motifs. We now find that inclusion of these motifs improves the prediction of RNA editing target sites. Previously overlooked RNA editing target sites are suggested from the PPR motif structures of known E-class PPR proteins and are experimentally verified. RNA editing target sites are assigned for the novel PPR protein MEF32 (mitochondrial editing factor 32) and are confirmed in the cDNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.