We report direct observation of a spatial distribution of water molecules inside of a living cell using Raman images of the O-H stretching band of water. The O-H Raman intensity of the nucleus was higher than that of the cytoplasm, indicating that the water density is higher in the nucleus than that in the cytoplasm. The shape of the O-H stretching band of the nucleus differed from that of the cytoplasm but was similar to that of the balanced salt solution surrounding cells, indicating less crowded environments in the nucleus. The concentration of biomolecules having C-H bonds was also estimated to be lower in the nucleus than that in the cytoplasm. These results indicate that the nucleus is less crowded with biomolecules than the cytoplasm.
Raman imaging microscopy is a powerful tool for label-free imaging of biological samples. It has the advantage of measuring the spatial distribution of endogenous proteins and lipids in cells, as well as obtaining chemical information on these endogenous molecules, such as hydrogen bonding and electrostatic interactions. However, because Raman intensity is very weak compared with fluorescence intensity, obtaining a reliable Raman image requires fast acquisition of a Raman image and rejection of background fluorescence. In this chapter, we describe the procedure for obtaining images of the Raman band of interest using a multipoint technique, which is the fast acquisition method for obtaining an image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.