The study presented in this paper was carried out to investigate further the effects of strain rate on the strength of adhesively bonded single lap shear joints. Tests were carried out on two different configurations of adhesively bonded joints that were designed to exhibit different behaviours. In one configuration both adherends were made from a relatively low strength grade of aluminium such that both would exhibit significant plastic deformation prior to adhesive failure. The other configuration used one adherend that was significantly stronger such that only elastic deformation was exhibited prior to failure of the adhesive. The joint specimens were tested at several different strain rates using a servo-hydraulic test machine and the results analysed using statistical methods. To further understand the results Finite Element models of the joints were created using a Cohesive Zone Model to predict damage development and failure in the adhesive. The Design of Experiments procedure was used to study the effects of material parameters relating to both the adherends and the adhesive in the Finite Element models. The results of the testing suggested that the strength of joints formed from two adherends that exhibited plastic deformation prior to failure did not show statistically significant sensitivity to strain rate. Interpretation of the results of the Finite Element analyses suggested that the adherend yield was the main factor influencing failure in the adhesive for joints of this type.
The study presented in this paper was carried out to assess the use of an embedded process zone based model in a commercial finite element code for predicting the behaviour of adhesively bonded structures. The relevant adhesive properties were measured using a variety of test methods and the results applied to the analysis of a single lap joint. Having demonstrated satisfactory accuracy in simulating the behaviour of the single lap joint the same methodology was then applied to a more complex structure. The structure used was a T shaped structure formed from two adhesively bonded aluminium rails. Despite some variability in the test results acceptable correlation with the analysis results was again achieved. The effects of variability in the adhesive material data on the output from the Finite Element analysis were investigated using a statistical study. This showed only a limited sensitivity to the interface toughness parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.