published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User
Domain-wall (DW) motion in magnetic nanostrips is intensively studied, in
particular because of the possible applications in data storage. In this work,
we will investigate a novel method of DW motion using magnetic field pulses,
with the precession torque as the driving mechanism. We use a one dimensional
(1D) model to show that it is possible to drive DWs in out-of-plane materials
using the precession torque, and we identify the key parameters that influence
this motion. Because the DW moves back to its initial position at the end of
the field pulse, thereby severely complicating direct detection of the DW
motion, depinning experiments are used to indirectly observe the effect of the
precession torque. The 1D model is extended to include an energy landscape in
order to predict the influence of the precession torque in the depinning
experiments. Although preliminary experiments did not yet show an effect of the
precession torque, our calculations indicate that depinning experiments can be
used to demonstrate this novel method of DW motion in out-of-plane materials,
which even allows for coherent motion of multiple domains when the
Dzyaloshinskii-Moriya interaction is taken into account
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.