In intense exercise (>80% VO 2max ), unlike at lesser intensities, glucose is the exclusive muscle fuel. It must be mobilized from muscle and liver glycogen in both the fed and fasted states. Therefore, regulation of glucose production (GP) and glucose utilization (GU) have to be different from exercise at <60% VO 2max , in which it is established that the portal glucagon-to-insulin ratio causes the less than or equal to twofold increase in GP. GU is subject to complex regulation by insulin, plasma glucose, alternate substrates, other humoral factors, and muscle factors. At lower intensities, plasma glucose is constant during postabsorptive exercise and declines during postprandial exercise (and often in persons with diabetes). During such exercise, insulin secretion is inhibited by -cell ␣-adrenergic receptor activation. In contrast, in intense exercise, GP rises seven-to eightfold and GU rises three-to fourfold; therefore, glycemia increases and plasma insulin decreases minimally, if at all. Indeed, even an increase in insulin during ␣-blockade or during a pancreatic clamp does not prevent this response, nor does pre-exercise hyperinsulinemia due to a prior meal or glucose infusion. At exhaustion, GU initially decreases more than GP, which leads to greater hyperglycemia, requiring a substantial rise in insulin for 40 -60 min to restore pre-exercise levels. Absence of this response in type 1 diabetes leads to sustained hyperglycemia, and mimicking it by intravenous infusion restores the normal response. Compelling evidence supports the conclusion that the marked catecholamine responses to intense exercise are responsible for both the GP increment (that occurs even during glucose infusion and postprandially) and the restrained increase of GU. These responses are normal in persons with type 1 diabetes, who often report exercise-induced hyperglycemia, and in whom the clinical challenge is to reproduce the recovery period hyperinsulinemia. Intense exercise in type 2 diabetes requires additional study. Diabetes 51 (Suppl. 1):S271-S283, 2002
D-Glucose protectable cytochalasin B (CB) binding to subcellular membrane fractions was used to determine glucose transporter number in red (quadriceps-gastrocnemius-soleus) and white (quadriceps-gastrocnemius) rat muscle. CB binding was twofold higher in isolated plasma membranes of red than of white muscle. In contrast, the number of transporters in an isolated insulin-sensitive intracellular membrane organelle was similar in the two muscle groups. Immunoblotting and immunofluorescence microscopy with anti-GLUT4 and anti-GLUT1 antibodies indicated that both GLUT1 and GLUT4 transporter isoforms account for the higher abundance of CB binding sites in plasma membranes of red than of white muscle. Immunofluorescence localized GLUT4 to both the surface and the interior of the muscle cell and demonstrated that type I (slow twitch oxidative) and type IIa (fast twitch oxidative-glycolytic) fibers are enriched in GLUT4 protein compared with type IIb (fast twitch glycolytic) fibers. In contrast, GLUT1 reactivity was restricted to the surface of the muscle cell and was also highly enriched in the perineurial sheaths of peripheral nerves and the capsules of muscle spindles present in both red and white muscles. Insulin caused a twofold increase in CB binding in isolated plasma membranes of red or white muscles with a corresponding 40-50% decrease in CB binding in isolated intracellular membranes. These changes in CB binding were paralleled by similar changes in the membrane distribution of the GLUT4 glucose transporter isoform and in glucose transport activity measured after insulin perfusion of hindquarter muscles. In contrast, insulin did not change the distribution of either GLUT1 glucose transporters or Na(+)-K(+)-ATPase alpha 1-subunits. The molar ratio of GLUT4 to GLUT1 in red and white muscle plasma membranes was found to be 4:1 in the basal state and 7:1 in the insulin-stimulated state. These results indicate that red muscle contains a higher amount of GLUT1 and GLUT4 transporters at the plasma membrane than white muscle in the basal and insulin-stimulated states but that GLUT4 translocation does not differ between muscle types. In addition, GLUT4 expression correlates with the metabolic nature (oxidative vs. glycolytic) of skeletal muscle fibers, rather than with their contractile properties (slow twitch vs. fast twitch).
Diabetes-induced oxidative stress can lead to protein misfolding and degradation by the ubiquitin-proteasome system. This study examined protein ubiquitination in pancreatic sections from Zucker diabetic fatty rats. We observed large aggregates of ubiquitinated proteins (Ubproteins) in insulin-expressing -cells and surrounding acinar cells. The formation of these aggregates was also observed in INS1 832/13 -cells after exposure to high glucose (30 mmol/l) for 8 -72 h, allowing us to further characterize this phenotype. Oxidative stress induced by aminotriazole (ATZ) was sufficient to stimulate Ub-protein aggregate formation. Furthermore, the addition of the antioxidants N-acetyl cysteine (NAC) and taurine resulted in a significant decrease in formation of Ub-protein aggregates in high glucose. Puromycin, which induces defective ribosomal product (DRiP) formation was sufficient to induce Ub-protein aggregates in INS1 832/13 cells. However, cycloheximide (which blocks translation) did not impair Ub-protein aggregate formation at high glucose levels, suggesting that long-lived proteins are targeted to these structures. Clearance of Ub-protein aggregates was observed during recovery in normal medium (11 mmol/l glucose). Despite the fact that 20S proteasome was localized to Ub-protein aggregates, epoxomicin treatment did not affect clearance, indicating that the proteasome does not degrade proteins localized to these structures. The autophagy inhibitor 3MA blocked aggregate clearance during recovery and was sufficient to induce their formation in normal medium. Together, these findings demonstrate that diabetes-induced oxidative stress induces ubiquitination and storage of proteins into cytoplasmic aggregates that do not colocalize with insulin. Autophagy, not the proteasome, plays a key role in regulating their formation and degradation. To our knowledge, this is the first demonstration that autophagy acts as a defense to cellular damage incurred during diabetes. Diabetes 56:930 -939, 2007
The aim of the present experiments is to validate, in conscious dogs, the tracer infusion methods of measuring nonsteady turnover rates. This was done in nine experiments performed in four normal dogs by infusing isotopically labeled glucose (2-3H, 6-3H, 1-14C) and monitoring the concentrations of both the labeled and unlabeled substances. The validation is based on the observation that a high exogenous infusion of glucose will suppress endogenous glucose production and become the sole source of glucose in the body. By infusing glucose at a high, time-varying rate, calculating its rate of appearance, (Ra) and comparing it to the infused rate, the method can be verified. The calculations were based on: a) a single-compartment model with a modified volume of distribution; b) a two-compartment model; and c) a generalized dispersion model. The absolute values of the areas of the deviations of the calculated from the infused curves were found to be, respectively, 9.5, 8.4, and 7.8 percent of the total area under the infused curve. It was concluded that the tracer infusion method can reliably measure Ra of glucose when it is changing rapidly, and the system is out of steady state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.