First, we report the application of stable isotope dilution theory in metabolome characterization of aerobic glucose limited chemostat culture of S. cerevisiae CEN.PK 113-7D using liquid chromatography-electrospray ionization MS/MS (LC-ESI-MS/MS). A glucose-limited chemostat culture of S. cerevisiae was grown to steady state at a specific growth rate (mu)=0.05 h(-1) in a medium containing only naturally labeled (99% U-12C, 1% U-13C) carbon source. Upon reaching steady state, defined as 5 volume changes, the culture medium was switched to chemically identical medium except that the carbon source was replaced with 100% uniformly (U) 13C labeled stable carbon isotope, fed for 4 h, with sampling every hour. We observed that within a period of 1 h approximately 80% of the measured glycolytic metabolites were U-13C-labeled. Surprisingly, during the next 3 h no significant increase of the U-13C-labeled metabolites occurred. Second, we demonstrate for the first time the LC-ESI-MS/MS-based quantification of intracellular metabolite concentrations using U-13C-labeled metabolite extracts from chemostat cultivated S. cerevisiae cells, harvested after 4 h of feeding with 100% U-13C-labeled medium, as internal standard. This method is hereby termed "Mass Isotopomer Ratio Analysis of U-13C Labeled Extracts" (MIRACLE). With this method each metabolite concentration is quantified relative to the concentration of its U-13C-labeled equivalent, thereby eliminating drawbacks of LC-ESI-MS/MS analysis such as nonlinear response and matrix effects and thus leads to a significant reduction of experimental error and work load (i.e., no spiking and standard additions). By coextracting a known amount of U-13C labeled cells with the unlabeled samples, metabolite losses occurring during the sample extraction procedure are corrected for.
Microbial metabolomics has received much attention in recent years mainly because it supports and complements a wide range of microbial research areas from new drug discovery efforts to metabolic engineering. Broadly, the term metabolomics refers to the comprehensive (qualitative and quantitative) analysis of the complete set of all low molecular weight metabolites present in and around growing cells at a given time during their growth or production cycle. This review focuses on the past, current and future development of various experimental protocols in the rapid developing area of metabolomics in the ongoing quest to reliably quantify microbial metabolites formed under defined physiological conditions. These developments range from rapid sample collection, instant quenching of microbial metabolic activity, extraction of the relevant intracellular metabolites as well as quantification of these metabolites using enzyme based and or modern high tech hyphenated analytical protocols, mainly chromatographic techniques coupled to mass spectrometry (LC-MSn, GC-MSn, CE-MSn), where n indicates the number of tandem mass spectrometry, and nuclear magnetic resonance spectroscopy (NMR)
Prolonged cultivation of Saccharomyces cerevisiae in aerobic, glucose-limited chemostat cultures (dilution rate, 0?10 h "1 ) resulted in a progressive decrease of the residual glucose concentration (from 20 to 8 mg l "1 after 200 generations). This increase in the affinity for glucose was accompanied by a fivefold decrease of fermentative capacity, and changes in cellular morphology. These phenotypic changes were retained when single-cell isolates from prolonged cultures were used to inoculate fresh chemostat cultures, indicating that genetic changes were involved. Kinetic analysis of glucose transport in an 'evolved' strain revealed a decreased K m , while V max was slightly increased relative to the parental strain. Apparently, fermentative capacity in the evolved strain was not controlled by glucose uptake. Instead, enzyme assays in cell extracts of the evolved strain revealed strongly decreased capacities of enzymes in the lower part of glycolysis. This decrease was corroborated by genome-wide transcriptome analysis using DNA microarrays. In aerobic batch cultures on 20 g glucose l "1 , the specific growth rate of the evolved strain was lower than that of the parental strain (0?28 and 0?37 h "1 , respectively). Instead of the characteristic instantaneous production of ethanol that is observed when aerobic, glucose-limited cultures of wild-type S. cerevisiae are exposed to excess glucose, the evolved strain exhibited a delay of~90 min before aerobic ethanol formation set in. This study demonstrates that the effects of selection in glucose-limited chemostat cultures extend beyond glucose-transport kinetics. Although extensive physiological analysis offered insight into the underlying cellular processes, the evolutionary 'driving force' for several of the observed changes remains to be elucidated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.