Electric vehicles (EVs) are gaining more and more traction as a viable option in the automotive sector. This mode of transportation is currently on track, according to current trends, to totally replace internal combustion engine (ICE) cars in the not-too-distant future. The economic system, the energy infrastructure, and the environment are just a few of the areas where electric vehicles could have a major impact. The transportation industry produces the second-most carbon dioxide gas from the combustion of fossil fuels, making it the second-highest contributor to global warming. A lot of people are looking to EVs, or electric vehicles, as a possible game-changing answer to this problem. Since an electric motor drives the electric vehicle’s propeller instead of an internal combustion engine, electric vehicles can reduce their carbon dioxide (CO2) emissions compared to traditional automobiles. If coupled with renewable energy sources, EVs might theoretically become emission-free automobiles. In this paper, we will examine the various EV drive circuit types, including their construction and the benefits and drawbacks of employing each. This article discusses the current state of battery technology with an emphasis on EV batteries. This article discusses the best electric motor for EVs in terms of efficiency, power density, fault tolerance, dependability, cost, and more. Next, we conduct in-depth research into the difficulties and potential rewards of EV adoption in the future. While improvements in areas like charging times and battery performance are encouraging, government regulation of EVs remains a big non-technical barrier.
A number of algorithms that aim to reduce power system losses and improve voltage profiles by optimizing distributed generator (DG) location and size have already been proposed, but they are still subject to several limitations. Hence, new algorithms can be developed or existing ones can be improved so that this important issue can be addressed more appropriately and effectively. This study proposes a reconfiguration methodology based on a hybrid optimization algorithm, consisting of a combination of the genetic algorithm (GA) and the improved particle swam optimization (IPSO) algorithm for minimizing active power loss and maintaining the voltage magnitude at about 1 p.u. The buses at which DGs should be injected were identified based on optimal real power loss and reactive power limit. When applying the proposed optimization algorithm for DGs allocation in power system, the search space or number of iterations was reduced, increasing its convergence rate. The proposed reconfiguration methodology was test in an IEEE-30 bus electrical network system with DGs allocations and the simulations were conducted using MATLAB software compared to other optimization algorithms, such as GA, PSO, and IPSO, the combination of GA and IPSO or Hybrid GA & IPSO (HGAIPSO) method has a smaller number of iterations and is more effective in optimization problems. The effectiveness of the proposed HGAIPSO has been tested on IEEE-30 bus network system with DGs allocations, and the obtained test results have been compared to those from other methods (i.e., GA, PSO, and IPSO). The simulation results show that the proposed HGAIPSO can be an efficient and promising optimization algorithm for distribution network reconfiguration problems. The IEEE-30 bus test system with DGs integrated at various location revealed reductions in overall real power loss of 40.7040%, 36.2403%, and 42.9406% for type 1, type 2, and type 3 DGs allocation, respectively. The highest bus voltage profile goes to 1.01 pu in the IEEE-30 bus.
Power grids of the future will likely incorporate more renewable energy distributed generation (REDG), also known as alternative energy systems. REDG units are increasingly being used in electrical transmission networks because of the positive effects they have on power networks. REDG systems are the backbone of smart electric networks and are essential to the operation of the smart grid. These REDG systems can additionally improve system reliability by providing some customers with a backup generator in the event of power interruptions. This review offers a thorough evaluation of the existing body of information on the topic of electric vehicles’ (EVs’) future interactions with smart grids. The combination of the potential deployment of EVs and the smart grid’s conceptual goal presents challenges for electric grid-related infra-structure, communication, and control. The proposal for connecting EVs to the grid is based on research into cutting-edge smart metering and communication systems. In the context of the vehicle-to-grid (V2G) phenomenon, the possibilities, benefits, and limitations of various EV smart-charging systems are also fully examined. A quickly growing percentage of distributed energy is derived from wind and solar (photovoltaic) energy. The variable power output of wind and solar energy introduces fresh challenges for those responsible for organizing, operating, and controlling the power grid. While fluctuations in the electric grid are problematic, they may be mitigated by the entry of EVs into the energy market. As such, we performed a comprehensive review of the literature to learn more about this exciting research gap that needs to be filled and to identify recently developed solutions to the problems related to EVs. Additionally, in this review article, we take a close look at the practicality of V2G technology. The smart grid is a developing concept that will likely have large implications for the world’s energy infrastructure, and this study thoroughly analyzes how EVs interact with it.
- Power grids of the future will likely incorporate more renewable energy distributed generation (REDG), also known as alternative energy systems. REDG units are increasingly being used in electrical transmission networks because to the overall positive effects they have on power networks. REDG systems are the backbone of smart electric networks and are essential to the operation of the smart grid. These REDG systems can additionally improve system reliability by providing some customers with a backup generator in the event of power interruptions. The report offers a thorough evaluation of the existing body of information on the topic of electric vehicles' (EVs') future interactions with the smart grid. The combination of the EVs' potential deployment and the smart grid's conceptual goal presents challenges in electric grid infra-structure, communication, and control. The proposal for connecting EVs to the grid is based on research into cutting-edge smart metering and communication systems. In the context of the vehicle-to-grid (V2G) phenomenon, the possibilities, benefits, and limitations of various EV smart charging systems are also fully examined. There is a fast growing percentage of distributed energy that is wind and solar photovoltaic. Their variable power output, however, introduces fresh challenges for those responsible for organizing, operating, and controlling the power grid. While fluctuations in the electric grid are problematic, they may be mitigated by the entry of EVs into the energy market. As such, we do a comprehensive literature search to learn more about the exciting research gap that needs to be filled and the most recent possible answer that involves EVs. Additionally, we take a close look at the practicality of the sophisticated V2G technology. The smart grid is a developing concept for the world's energy infrastructure, and this study analyzes in depth how EVs interact with it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.