An experimental study on tensile, flexural and impact properties of flax-basalt-glass reinforced epoxy hybrid composites is presented in this paper. Test specimens were fabricated by vacuum bagging process. The effects of reinforcement hybridization, fiber relative amounts and stacking sequence on the mechanical properties were investigated. Morphological studies of the fabricated and fractured surfaces through thickness were performed using scanning electron microscopy. Results showed that the developed hybrid composites display enhanced tensile, flexural and impact performance as compared with flax reinforced epoxy composite. The flexural strength increases when partial laminas from flax/epoxy laminate are replaced by basalt/epoxy and/or glass/epoxy laminas. Also, it is realized that incorporating high-strength fibers, i.e. glass or basalt, to the outer layers of the composite leads to higher flexural resistance, whilst the opposite was noticed for tensile properties. The fabricated hybrids were found to have economical and specific mechanical properties benefits. Fiber-relative amounts and stacking sequence have great effects on the mechanical properties. The mechanical properties of hybrid laminates are proven to be highly dependent on the position of the flax layers within the hybrid composite. The Hybridization with basalt and/or glass fibers is an effective method for enhancing the mechanical properties of flax/epoxy composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.