Plant food wastes generated through the food chain have attracted increasing attention over the last few years not only due to critical environmental and economic issues but also as an available source of valuable components such as dietary fibers. However, the exploitation of plant waste remains limited due to the lack of appropriate processing technologies to recover and tailor fiber functionalities. Among the different technologies developed for waste valorization, mechanical techniques were suggested to be a promising and sustainable strategy to extract fibers with improved functionalities. In this context, the present review describes different mechanical technologies (conventional and innovative) with potential applications to produce micro/nanofibers from various plant residues, highlighting the operating principle as well as the main advantages and pitfalls. The impact on the structural, technological, and functional properties of fibrous materials is comprehensively discussed. The extent of fiber modification not only highly depended on the technology and operation conditions used but also on fiber composition and the application of posttreatments such as dehydration. Other variables, including economic and environmental issues such as equipment cost, energy demand, and eco‐friendly features, are also reviewed. The outputs of this review can be used by both the industrial sector and academia to select a suitable combination of fiber and processing technology for designing novel foods with improved functionalities that fulfill market trends and consumer needs.
Desalted Duck Egg Whites (DDEW) was prepared by electrodialysis desalination using Salted Duck Egg Whites (SDEW). DDEW and SDEW (used as control) were subjected to freeze drying process. Freeze Dried Desalted and Salted Duck Egg Whites (FDDEW and FSDEW, respectively) were assessed for functional properties (turbidity, foaming, emulsifying and gelation) and some physicochemical characteristics. Among the physicochemical parameters, the proximate composition, amino acid composition, pH, particle sizes, microstructure and color attributes were studied. The electrodialysis desalination process had significant effect on the physicochemical characteristics of FDDEW and FSDEW except for amino acids composition. Thus, the pH decreased from 8.07 to 7.40 while the NaCl content decreased from 3.76 to 0.18%. The same trend was observed for protein and ash contents. The functional properties were variable among the two samples. For instance, the gel characteristics decreased sharply after electrodialysis desalination treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.