This paper presents a simplied PWM technique to drive switched capacitor type multi-level inverter fed from isolated type DC-DC converter for distributed generation. Distributed generation (DG) is renowned power generation at point of utility with no environmental a ects and reduces transmission line losses. Photovoltaic system is considered as renewable energy source for DG and the low voltage from PV system is boosted to required voltage using an isolated type single-input multi-output (SIMO) DC-DC converter. DC output from isolated SIMO DC-DC converter is fed to switched capacitor type multi-level inverter (SC-MLI) to feed the AC load. Isolated SIMO DC-DC converter apart from boosting the DG output voltage, also eliminates the problem of voltage unbalancing in SC-MLI topology. Closed loop operation of SIMO DC-DC converter employs only single PI controller instead of three controllers was presented in this paper. Modes of operation of SCMLI and PWM switching pattern were explained. Simulation of proposed system was developed using MATLAB/SIMULINK software.
In this paper, the Enhanced Z-Source Switched Capacitor Multi-Level Inverter (EZSC-MLI) is presented, which can generate a greater number of levels and magnitude in output. The proposed MLI has greater recognition due to its low harmonic profile, fewer switching components, compact size, low switch stress, isolated DC supply, high efficiency, and low cost. A high voltage boost factor is achieved by using the Z-Source. The Switched Capacitor module is used for charging all the capacitors to equal voltage magnitude based on a self-balanced scheme. The proposed topology for grid integration requires dual control loops, a primary voltage control loop, and a secondary current control loop. The performance of the proposed 7-level topology for grid integrated systems is verified with multi-carrier advanced modulation schemes and by simulations carried out in Matlab/Simulink.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.