The 2016 Warwick Agreement on femoroacetabular impingement (FAI) syndrome was convened to build an international, multidisciplinary consensus on the diagnosis and management of patients with FAI syndrome. 22 panel members and 1 patient from 9 countries and 5 different specialties participated in a 1-day consensus meeting on 29 June 2016. Prior to the meeting, 6 questions were agreed on, and recent relevant systematic reviews and seminal literature were circulated. Panel members gave presentations on the topics of the agreed questions at Sports Hip 2016, an open meeting held in the UK on 27-29 June. Presentations were followed by open discussion. At the 1-day consensus meeting, panel members developed statements in response to each question through open discussion; members then scored their level of agreement with each response on a scale of 0-10. Substantial agreement (range 9.5-10) was reached for each of the 6 consensus questions, and the associated terminology was agreed on. The term 'femoroacetabular impingement syndrome' was introduced to reflect the central role of patients' symptoms in the disorder. To reach a diagnosis, patients should have appropriate symptoms, positive clinical signs and imaging findings. Suitable treatments are conservative care, rehabilitation, and arthroscopic or open surgery. Current understanding of prognosis and topics for future research were discussed. The 2016 Warwick Agreement on FAI syndrome is an international multidisciplinary agreement on the diagnosis, treatment principles and key terminology relating to FAI syndrome.
AimThe purpose of this study was to investigate the relationship between physical workload and injury risk in elite youth football players.MethodsThe workload data and injury incidence of 32 players were monitored throughout 2 seasons. Multiple regression was used to compare cumulative (1, 2, 3 and 4-weekly) loads and acute:chronic (A:C) workload ratios (acute workload divided by chronic workload) between injured and non-injured players for specific GPS and accelerometer-derived variables:total distance (TD), high-speed distance (HSD), accelerations (ACC) and total load. Workloads were classified into discrete ranges by z-scores and the relative risk was determined.ResultsA very high number of ACC (≥9254) over 3 weeks was associated with the highest significant overall (relative risk (RR)=3.84) and non-contact injury risk (RR=5.11). Non-contact injury risk was significantly increased when a high acute HSD was combined with low chronic HSD (RR=2.55), but not with high chronic HSD (RR=0.47). Contact injury risk was greatest when A:C TD and ACC ratios were very high (1.76 and 1.77, respectively) (RR=4.98).ConclusionsIn general, higher accumulated and acute workloads were associated with a greater injury risk. However, progressive increases in chronic workload may develop the players' physical tolerance to higher acute loads and resilience to injury risk.
ObjectivesWe examined the relation between global positioning system (GPS)-derived workloads and injury in English Premier League football players (n=33) over three seasons.MethodsWorkload and injury data were collected over three consecutive seasons. Cumulative (1-weekly, 2-weekly, 3-weekly and 4-weekly) loads in addition to acute:chronic workload ratios (ACWR) (acute workload (1-week workload)) divided by chronic workload (previous 4-week average acute workload) were classified into discrete ranges by z-scores. Relative risk (RR) for each range was then calculated between injured and non-injured players using specific GPS variables: total distance, low-intensity distance, high-speed running distance, sprint distance, accelerations and decelerations.ResultsThe greatest non-contact injury risk was when the chronic exposure to decelerations was low (<1731) and the ACWR was >2.0 (RR=6.7). Non-contact injury risk was also 5–6 times higher for accelerations and low-intensity distance when the chronic workloads were categorised as low and the ACWR was >2.0 (RR=5.4–6.6), compared with ACWRs below this. When all chronic workloads were included, an ACWR >2.0 was associated with a significant but lesser injury risk for the same metrics, plus total distance (RR=3.7–3.9).ConclusionsWe recommend that practitioners involved in planning training for performance and injury prevention monitor the ACWR, increase chronic exposure to load and avoid spikes that approach or exceed 2.0.
IntroductionCam morphology is a strong risk factor for the development of hip pain and osteoarthritis. It is increasingly thought to develop in association with intense physical activity during youth; however, the aetiology remains uncertain. The study aim was to characterise the effect of physical activity on morphological hip development during adolescence.MethodsCross-sectional study of individuals aged 9–18 years recruited from Southampton Football Club Academy (103 male) with an age-matched control population (52 males and 55 females). Assessments included questionnaires and 3 Tesla MRI of both hips. Alpha angle, epiphyseal extension and epiphyseal tilt were measured on radial images.ResultsAlpha angle and epiphyseal extension increased most rapidly between ages 12 and 14 years. Soft-tissue hypertrophy at the femoral head-neck junction preceded osseous cam morphology and was first evident at age 10 years. The greatest increase and highest absolute values of alpha angle and epiphyseal extension were colocalised at 1 o’clock. Maximum alpha angles were 6.7 degrees greater in males than females (p=0.005). Compared with individuals who play no regular sport, alpha angles were 4.0 degrees higher in individuals who play sport for a school or club (p=0.041) and 7.7 degrees higher in individuals competing at a national or international level (p=0.035). There was no association with leg dominance.ConclusionsSporting activity during adolescence is strongly associated with the development of cam morphology secondary to epiphyseal hypertrophy and extension with a dose-response relationship. Males participating in competitive sport are at particularly elevated risk of developing cam morphology and secondary hip pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.