Nonmechanical beam steering is a rapidly growing branch of adaptive optics with applications such as light detection and ranging, imaging, optical communications, and atomic physics. Here, we present an innovative technique for one- and two-dimensional beam steering using multiple tunable liquid lenses. We use an approach in which one lens controls the spot divergence, and one to two decentered lenses act as prisms and steer the beam. Continuous 1D beam steering was demonstrated, achieving steering angles of ±39° using two tunable liquid lenses. The beam scanning angle was further enhanced to ±75° using a fisheye lens. By adding a third tunable liquid lens, we achieved 2D beam steering of ±75°. In this approach, the divergence of the scanning beam is controlled at all steering angles.
A light detection and ranging (lidar) system with ±90 • of steering based on an adaptive electrowetting-based prism for nonmechanical beam steering has been demonstrated. Electrowetting-based prisms provide a transmissive, low power, and compact alternative to conventional adaptive optics as a nonmechanical beam scanner. The electrowetting prism has a steering range of ±7.8 • . We demonstrate a method to amplify the scan angle to ±90 • and perform a one-dimensional scan in a lidar system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.