The SISE-Eaux database of water intended for human consumption, archived by the French Regional Health Agency (ARS) since 1990, is a rich source of information. However, more or less regular monitoring over almost 30 years and the multiplication of parameters lead to a sparse matrix (observations × parameters) and a large dimension of the hyperspace of data. These characteristics make it difficult to exploit this database for a synthetic mapping of water quality, and to identify of the processes responsible for its diversity in a complex geological context and anthropized environment. A 10-year period (2006–2016) was selected from the Provence-Alpes- Côte d’Azur region database (PACA, southeastern France). We extracted 5,295 water samples, each with 15 parameters. A treatment by principal component analysis (PCA) followed with orthomax rotation allows for identifying and ranking six principal components (PCs) totaling 75% of the initial information. The association of the parameters with the principal components, and the regional distribution of the PCs make it possible to identify water-rock interactions, bacteriological contamination, redox processes and arsenic occurrence as the main sources of variability. However, the results also highlight a decrease of useful information, a constraint linked to the vast size and diversity of the study area. The development of a relevant tool for the protecting and managing of water resources will require identifying of subsets based on functional landscape units or the grouping of groundwater bodies.
In many parts of the world, the impact of open landfills on soils, biosphere, and groundwater has become a major concern. These landfills frequently generate pollution plumes, the contours of which can be delineated by non-intrusive geophysical measurements, but in arid environments, the high soils resistivity is usually an obstacle, which results in the low number of studies that have been carried out there. In addition, such prospecting using geophysical techniques do not provide information on the intensity of the processes occurring in the water table. This study was carried out on an uncontrolled landfill in the arid Tadla plain, Morocco’s main agricultural region. A survey based on geo-referenced spontaneous potential measurements was combined with measurements of anoxic conditions (Eh-pH and O2 equilibrating partial pressure) in the groundwater and leachates, in order to highlight a pollution plume and its geometry. The range of spontaneous potential measurement is wide, reaching 155 mV. Ponds of leachate with high electrical conductivity (20 to 40 mS cm−1) form within the landfill, and present very reducing conditions down to sulphate reduction and methanisation. The plume is slowly but continuously supplied with these highly reducing and organic carbon-rich leachates from the landfill. Its direction is towards N-NW, stable throughout the season, and consistent with local knowledge of groundwater flow. The fast flow of the water table suggests pollution over long distances that should be monitored in the future. The results obtained are spatially contrasting and stable, and show that such techniques can be used on a resistive medium of arid environments.
In France, the data resulting from monitoring water intended for human consumption are integrated into a national database called SISE-Eaux, a useful and relevant tool for studying the quality of raw and distributed water. A previous study carried out on all the data from the Provence-Alpes-Côte d’Azur (PACA) region in south-eastern France (1061 sampling points, 5295 analyses and 15 parameters) revealed that the dilution of the information in a heterogeneous environment constitutes an obstacle to the analysis of ongoing processes that are sources of variability. In this article, cross-referencing this information with the compartmentalization into groundwater bodies (MESO) provides a hydrogeological constraint on the dataset that can help to better define more homogeneous subsets and improve the interpretation. The approach involves three steps: (1) A principal component analysis conducted on the whole dataset aimed at eliminating information redundancy; (2) an unsupervised grouping of groundwater bodies having similar sources of variability; (3) a principal component analysis carried out within the main groups and sub-groups identified, aiming to define and prioritize the sources of variability and the associated processes. The results supported by discriminant analysis and machine learning show that the grouping of MESO is the best-suited scale to study ongoing processes due to greater homogeneity. One of the eight main groups identified in PACA, corresponding to the accompanying aquifers of the main rivers, is analyzed by way of illustration. Water–rock interactions, redox processes and their effects on the release of metals, arsenic and fecal contamination along different pathways were specifically identified with varying impacts according to the subgroups. We discussed both the significance of the principal components and the mean values of the bacteriological parameters, which provide information on the causes and on the state of contamination, respectively. Based on the results from two different groups of MESO, some guidelines in terms of a strategy for resource quality monitoring are proposed.
The main landfill in the city of Rabat (Morocco) is based on sandy material containing the shallow Mio-Pliocene aquifer. The presence of a pollution plume is likely, but its extent is not known. Measurements of spontaneous potential (SP) from the soil surface were cross-referenced with direct measurements of the water table and leachates (pH, redox potential, electrical conductivity) according to the available accesses, as well as with an analysis of the landscape and the water table flows. With a few precautions during data acquisition on this resistive terrain, the results made it possible to separate the electrokinetic (~30%) and electrochemical (~70%) components responsible for the range of potentials observed (70 mV). The plume is detected in the hydrogeological downstream of the discharge, but is captured by the natural drainage network and does not extend further under the hills.
Urban flooding is a complex natural hazard, driven by the interaction between several parameters related to urban development in a context of climate change, which makes it highly variable in space and time and challenging to predict. In this study, we apply a multivariate analysis method (PCA) and four machine learning algorithms to investigate and map the variability and vulnerability of urban floods in the city of Tangier, northern Morocco. Thirteen parameters that could potentially affect urban flooding were selected and divided into two categories: geo-environmental parameters and socio-economic parameters. PCA processing allowed identifying and classifying six principal components (PCs), totaling 73% of the initial information. The scores of the parameters on the PCs and the spatial distribution of the PCs allow to highlight the interconnection between the topographic properties and urban characteristics (population density and building density) as the main source of variability of flooding, followed by the relationship between the drainage (drainage density and distance to channels) and urban properties. All four machine learning algorithms show excellent performance in predicting urban flood vulnerability (ROC curve > 0.9). The Classifications and Regression Tree and Support Vector Machine models show the best prediction performance (ACC = 91.6%). Urban flood vulnerability maps highlight, on the one hand, low lands with a high drainage density and recent buildings, and on the other, higher, steep-sloping areas with old buildings and a high population density, as areas of high to very-high vulnerability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.