Objective To investigate Acacia honey from different altitudes regarding total phenols and flavonoids, laser-induced fluorescence (LIF) spectra and anticancer activity against human cancer cell lines. Methods Anticancer activity was investigated using sulforhodamine B cytotoxicity assays in the following human cancer cell lines: HCT116 (colon); MCF7 (breast), and HepG2 (liver). Total phenols and flavonoids were measured using spectrophotometric methods and LIF was used to differentiate between low and high-altitude honey. Results The LIF spectra differed between low and high-altitude Acacia honey. High altitude Acacia honey was characterized by significantly lower total phenol content (81.47 ± 1.25 mg gallic acid equivalent [GAE]/100 g) and increased total flavonoids (10.63 ± 0.53 mg quercetin equivalent [QE]/100 g) versus low altitude Acacia honey (91.33 ± 0.96 mg GAE/100 g and 8.78 ± 0.23 mg QE/100 g, respectively). Low altitude Acacia honey displayed increased IC50 values against HCT116 and MCF7 cells (264.17 ± 10.5 and 482.65 ± 20.3 µg/ml, respectively) versus high altitude Acacia honey (117.99 ± 12.7 and 189.82 ± 15.8 µg/ml, respectively). Conclusions High altitude Acacia honey had significantly more effective anticancer activity against HCT116 and MCF7 cells compared with low altitude honey.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.