The world is currently facing a strong epidemic and pandemic of coronavirus. This motivates establishing our paper, where this virus pushes researchers to study, investigate, observe, analyse and try solving its related issues. In this work, an artificial neural network (ANN) model of backpropagation neural network (BNN) with two hidden layers is proposed for expecting confirmed cases and death cases of coronavirus disease 2019 (covid-19). As a field of study, Iraq country has been considered in this paper. Covid-19 dataset from our world in data (OWID) is used here. Promising result is achieved where a very small error value of 0.0035 is reported in overall the evaluations. This paper may implicate establishing further researches that consider other parameters and other countries over the world. It is worth mentioning that the suggested ANN model may help decision maker people in taking quarantine movements against the strong epidemic and pandemic of covid-19.
At the end of 2019, a new virus called coronavirus has globally spread causing severe effections. In this paper, an artificial intelligence (AI) method is proposed to predict numbers of death and confirmed coronavirus cases. Efficient machine learning (ML) network named the byesian regularization backpropagation (BRB) is employed. It can estimates numbers of death and confirmed cases from applied population density and date. So, the BRB uses the population density, month and day as inputs, and predicts the new cases per million and new deaths per million as outputs. The network was trained and assessed by using a daily coronavirus recorded dataset known as the our world in data (OWID). The considered dates here are from the 31st of December 2019 to the 13th of October 2020. Furthermore, recorded information from countries over all world are employed. The obtained results provided a good promising performance with a testing mean absolute error (MAE) equal to 0.0218.
This paper established a relationship between multi-spectral palm images and a face image based on multiple fusion methods. The first fusion method to be considered is a feature extraction between different multi-spectral palm images, where multi-spectral CASIA database was used. The second fusion method to be considered is a score fusion between two parts of an output face image. Our method suggests that both right and left hands are used, and that each hand aims to produce a significant part of a face image by using a Multi-Layer Perceptron (MLP) network. This will lead to the second fusion part to reconstruct the full-face image, in order to examine its appearance. This topology provided interesting results of Equal Error Rate (EER) equal to 1.99%.
Encryption is a substantial phase in information security. It permits only approved persons to get private information. This study suggests a signal multi-encryptions system (SMES) technique for coding and decoding signals created by a deep autoencoder network (DAN). The DAN of four layers is employed for a coding package of signals multiple times before decoding or restructuring the original signals again. The suggested SMES offers a high level of security as it can produce and exploit multiple encryptions for signals. Many statistical calculations are applied to measure the reliability of the system. The outcomes are promising where noteworthy encryptions-decryptions are obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.