Pore wetting is undesirable in the membrane gaseliquid separation process as it deteriorates the gas removal flux. To alleviate the affinity of a membrane surface toward a liquid solvent, its hydrophobicity needs to be enhanced. In this study, a superhydrophobic polyvinylidene fluoride-co-hexafluoropropylene membrane was synthesized via a simple and facile nonsolvent-induced phase inversion process. Hydrophobic nano-SiO 2 particles were used as solvent additives to improve the wetting resistance of the membrane. The results revealed that blended nano-SiO 2 membranes exhibited enhanced surface hydrophobicity in terms of water contact angle. Such improvement was attributed to the enhancement of surface roughness via the formation of hierarchical multilevel protrusions. Besides, the embedment of nanoparticles in polymer spherulitic globules also contributed to the reduction in surface energy of the membrane. As a result, the blended nano-SiO 2 membrane achieved superhydrophobicity with a water contact angle of up to 151 .
Ultrafiltration membrane has been widely used for oily wastewater treatment application attributed to its cost-efficiency, ease of operation, and high separation performance. To achieve high membrane flux, the pores of the membrane need to be wetted, which can be attained by using hydrophilic membrane. Nevertheless, conventional hydrophilic membrane suffered from inhomogeneous dispersion of nanofillers, causing a bottleneck in the membrane flux performance. This called for the need to enhance the dispersion of nanofillers within the polymeric matrix. In this work, in-house-fabricated hydrous manganese dioxide–aluminum oxide (HMO-Al2O3) was added into polyethersulfone (PES) dope solution to enhance the membrane flux through a xylem-inspired water transport mechanism on capillary action aided by cohesion force. Binary fillers HMO-Al2O3 loading was optimized at 0.5:0.5 in achieving 169 nm membrane mean pore size. Membrane morphology confirmed the formation of macro-void in membrane structure, and this was probably caused by the hydrophilic nanofiller interfacial stress released in PES matrix during the phase inversion process. The superhydrophilic properties of PES 3 in achieving 0° water contact angle was supported by the energy-dispersive X-ray analysis, where it achieved high O element, Mn element, and Al elements of 39.68%, 0.94%, and 5.35%, respectively, indicating that the nanofillers were more homogeneously dispersed in PES matrix. The superhydrophilic property of PES 3 was further supported by high pure water flux at 245.95 L/m2.h.bar, which was 3428.70% higher than the pristine PES membrane, 197.1% higher than PES 1 incorporated with HMO nanofiller, and 854.00% higher than PES 5 incorporated with Al2O3 nanofillers. Moreover, the excellent membrane separation performance of PES 3 was achieved without compromising the oil rejection capability (98.27% rejection) with 12 g/L (12,000 ppm) oily wastewater.
Membrane gas-liquid separation technology has gained great interest in membrane desalination, distillation, and gas absorption attributed to its good operation flexibility, small footprint and high specific interfacial area. Membrane acts as the non-selective barrier between gas and liquid solvent by allowing the diffusion of gas molecules via pressure difference. Currently used membrane is susceptible to pore wetting at high operational pressure, transforming its non-wetted condition to partially wetted and wetted mode. Such condition introduces additional mass transfer resistance to gas molecules, leading to the poor removal flux. In order to alleviate the wetting tendency, membrane hydrophobicity needs to be enhanced. In this work, highly hydrophobic PVDF-HFP membrane of improved anti-wettability properties was synthesized via non-solvent induced phase separation. The effect of polymer concentration and coagulation medium on membrane wettability were studied. The results revealed that PVDF-HFP membrane of 10wt% polymer concentration presented high water contact angle of 100.4°. By changing water to ethanol as coagulation medium, membrane exhibited a symmetric nodular structure which enhanced water contact angle by 20.3% to 130.5º. To further improve membrane hydrophobicity, modified silica (MS) nanoparticles were used as surface modifier in coagulation bath. When the nanoparticles content increased from 0g to 2g, the water contact angle of the PVDF-HFP modified membrane increased significantly from 130.5° to 163.1°. As a result, the liquid entry pressure of the membranes increased gradually from 0.58bar to 3.38bar with MS incorporation. This disparity in membrane anti-wettability is due to the increase in surface roughness and reduction in surface energy. Additionally, the modified membrane at MS loading of 2g showed high porosity at 78%, which is adequate to provide increased mass transfer rate between gas and liquid solvent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.