Peer-to-peer (P2P) energy trading platform is an upcoming energy generation and effective energy managing strategy that rewards proactive customers (acting as prosumers) in which individuals trade energy for products and services. On the other hand, P2P trading is expected to give multiple benefits to the grid in minimizing the peak load demand, energy consumption costs, and eliminating network losses. However, installing P2P energy trading on a broader level in electrical-based networks presents a number of modeling problems in physical and virtual network layers. As a result, this article presents a thorough examination of P2P studies of energy trade literature. An overview is given with the essential characteristics of P2P energy trading and comparatively analyzed with multiple advantages for the utility grid and individual prosumers. The study then addresses the physical and virtual levels that systematically categorize the available research. Furthermore, the technological techniques have been gone through multiple problems that need to overcome for P2P energy trading in electrical networks. Finally, the article concludes with suggestions for further research.
An energy management system (EMS) was proposed for a campus microgrid (µG) with the incorporation of renewable energy resources to reduce the operational expenses and costs. Many uncertainties have created problems for microgrids that limit the generation of photovoltaics, causing an upsurge in the energy market prices, where regulating the voltage or frequency is a challenging task among several microgrid systems, and in the present era, it is an extremely important research area. This type of difficulty may be mitigated in the distribution system by utilizing the optimal demand response (DR) planning strategy and a distributed generator (DG). The goal of this article was to present a strategy proposal for the EMS structure for a campus microgrid to reduce the operational costs while increasing the self-consumption from green DGs. For this reason, a real-time-based institutional campus was investigated here, which aimed to get all of its power from the utility grid. In the proposed scenario, solar panels and wind turbines were considered as non-dispatchable DGs, whereas a diesel generator was considered as a dispatchable DG, with the inclusion of an energy storage system (ESS) to deal with solar radiation disruptions and high utility grid running expenses. The resulting linear mathematical problem was validated and plotted in MATLAB with mixed-integer linear programming (MILP). The simulation findings demonstrated that the proposed model of the EMS reduced the grid electricity costs by 38% for the campus microgrid. The environmental effects, economic effects, and the financial comparison of installed capacity of the PV system were also investigated here, and it was discovered that installing 1000 kW and 2000 kW rooftop solar reduced the GHG generation by up to 365.34 kg CO2/day and 700.68 kg CO2/day, respectively. The significant economic and environmental advantages based on the current scenario encourage campus owners to invest in DGs and to implement the installation of energy storage systems with advanced concepts.
Electrical energy is very necessary for human life in the modern era. The rising energy prices, depletion of fossil fuels, and instability of the grid are alarming situations. So, it needs a smart solution to ensure the balance between pricing and saving natural resources. Some other issues like environmental change, limitations on installation of new transmission lines, reliability concerns, and considering the expansion in distributed energy generation technologies promise the implementation of distributed generation extensively. The integration of two or more energy supplies in a power system is known as distributed energy resource system. In this study, a university campus is taken as a case study to reduce the energy cost while considering the aforementioned issues. The intelligent source–load–storage coordination scheme is proposed to utilize the available renewable energy resources with storage systems. The proposed linear model is solved in MATLAB using the exact method technique considering the economic parameters. The campus microgrid analysis is not addressed considering the Internet-of-Thing (IoT)-based building, especially in the scenario of Pakistan. The results show the efficacy of the proposed model and can be implemented on the existing campus for source–load–storage coordination as an economical solution.
Background: Current energy systems face multiple problems related to inflation in the energy prices, reduction of fossil fuels, and greenhouse gas emissions in disturbing the comfort zone of energy consumers and affordability of power for large commercial customers. This kind of problem can be alleviated with the help of optimal planning of Demand Response policies and with distributed generators in the distribution system. The objective of this article is to give a strategic proposition of an energy management system for a campus microgrid (µG) to minimize the operating costs and to increase the self-consuming energy of green DGs. To this end, a real-time-based campus is considered that is currently providing its loads from the utility grid only. Yet, according to the proposed given scenario, it contains the solar panels and wind turbine as a non-dispatchable DG while a diesel generator is considered as a dispatchable DG. It also incorporates the energy storage system with the optimal sizing of BESS to tackle with multiple disturbances that arise from solar radiations. Results: The resultant problem of linear mathematics has been simulated and plotted in MATLAB with mixed-integer linear programming. Simulation results show that the proposed given model of EMS minimizes the grid electricity costs by 31% in case of summer and 38% in case of winter respectively, while the reduction of GHG emissions per day is 780.68 and 730.46 kg for the corresponding summer and winter seasons. The general effect of a medium-sized solar PV installation on carbon emissions and energy consumption costs is also observed. Conclusion: The substantial environmental and economic benefits compared to the present case prompt campus owners to put investment in the DGs and to install large-scale energy storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.