Forecasting the electrical load is essential in power system design and growth. It is critical from both a technical and a financial standpoint as it improves the power system performance, reliability, safety, and stability as well as lowers operating costs. The main aim of this paper is to make forecasting models to accurately estimate the electrical load based on the measurements of current electrical loads of the electricity company. The importance of having forecasting models is in predicting the future electrical loads, which will lead to reducing costs and resources, as well as better electric load distribution for electric companies. In this paper, deep learning algorithms are used to forecast the electrical loads; namely: (1) Long Short-Term Memory (LSTM), (2) Gated Recurrent Units (GRU), and (3) Recurrent Neural Networks (RNN). The models were tested, and the GRU model achieved the best performance in terms of accuracy and the lowest error. Results show that the GRU model achieved an R-squared of 90.228%, Mean Square Error (MSE) of 0.00215, and Mean Absolute Error (MAE) of 0.03266.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.