Convolutional neural networks have demonstrated state-of-the-art performance in image classification and various other computer vision tasks. Plant disease detection is an important area of deep learning which has been addressed by many recent methods. However, there is a dire need to optimize these solutions for resource-constrained portable devices such as smartphones. This is a challenging problem because deep learning models are resource extensive in nature. This paper proposes an efficient method to systematically classify plant disease symptoms using convolutional neural networks. These networks are memory efficient and when coupled with the proposed training configuration it enables rapid development of industrial applications by reducing the training times. Another critical problem arises with the improper distribution of samples among classes known as the class imbalance problem, which is addressed by employing a simple statistical methodology. Transfer learning is a known technique for training small datasets which transfers pre-trained weights learned on a large dataset. However, during transfer learning, negative transfer learning is a common problem. Therefore, a stepwise transfer learning approach is proposed which can help in fast convergence, while reducing overfitting and preventing negative transfer learning during knowledge transfer across domains. The system is trained and evaluated on two plant disease datasets i.e., PlantVillage (a publicly available dataset) and pepper disease dataset provided by the National Institute of Horticultural and Herbal Science, Republic of Korea. The pepper dataset is particularly challenging as it contains images from different parts of the plant such as the leaf, pulp, and stem. The proposed system has dominated the previous works on the PlantVillage dataset and achieved 99% and 99.69% accuracy on the Pepper dataset and PlantVillage datasets, respectively.
Neural architectures have accelerated the advancement in various domains by enabling automatic pattern detection, image classification, audio recognition, and face recognition etc. However, they are computationally expensive to design and expert knowledge in various domains is required. In this paper, a swarm intelligence algorithm is proposed to search for novel architectures without human intervention that can achieve comparable performance to those of human-designed architectures. This work is inspired by current neural architecture search approaches based on reinforcement learning and genetic algorithm. However, not much attention is paid towards swarm intelligence metaheuristics-based neural architecture search. A framework is proposed for automatically designing neural architectures based on a swarm intelligence metaheuristic: Crow Search Algorithm. First, Crow Search Algorithm is integrated with binary network representation. To make it compatible for Neural Architecture Search, the original distance metric is replaced with hamming distance-based similarity measure. Second, the tuning parameters of Crow Search Algorithm are reduced by replacing the static flight length parameter with our dynamic flight length distribution algorithm. Third, the target selection method (random selection) is replaced by tournament select method. The proposed framework is used to search for architectures on MNIST, CIFAR10, and CIFAR100 datasets and achieved 0.18%, 3.48%, and 15.64% test error, respectively. Furthermore, smallscale transfer experiments are conducted to search architectures for Tiny ImageNet and achieved 34.43% test error. Nonparametric statistical analysis is performed to validate the impact of each modification in improving the quality of search space exploration. The proposed framework has achieved comparable performance with the state-of-the-art approaches, with a comparatively simpler approach and minimum human intervention. The proposed framework can be used to develop completely automated systems for designing architectures for various data-based classification applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.