So far, various data-driven approaches have been presented to obtain channel state information (CSI) in mmWave multiple-input-multiple-output (MIMO) wireless networks. In almost all previous works, training and testing channels were assumed to have the same distribution, which may not be the case in practice. In this paper, we address this challenge, by proposing a learning framework that is a combination of a long short-term memory (LSTM) network and a deep neural network (DNN) for estimating CSI in a dynamic wireless communication environment. Furthermore, we use federated learning (FL) to train the learning-based channel estimation (CE) model. More specifically, we introduce a two-stage downlink pilot transmission procedure, where in the initial stage, long frame length downlink pilot signals are used to train the introduced RNN-DNN model. Following that, users will receive shorter-frame-length pilot signals that can be used for CSI estimation. To speed up the training procedure of the proposed network, we first generate a pre-trained model and then modify it according to the collected data samples. Simulation results demonstrate that, when the channel distribution is unavailable, the proposed approach performs significantly better than the most recent channel estimation algorithms in terms of estimation performance and computational complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.