Room-temperature ionic liquids (ILs) are a unique, novel class of designer solvents and materials with exclusive properties, attracting substantial attention in fields like energy storage and supercapacitors as well as in ion-based signal processing and electronics. For most applications, ILs need to be incorporated or embedded in solid materials like porous hosts. We investigate the dynamic structure of ILs embedded in well-defined pores of metal–organic frameworks (MOFs). The experimental data combined with molecular dynamics simulations unveil astonishing dynamic properties of the IL in the MOF nanoconfinement. At low IL loadings, the ions drift in the pores along the electric field, whereas at high IL loadings, collective field-induced interactions of the cations and anions lead to blocking the transport, thus suppressing the ionic mobility and tremendously decreasing the conductivity. The mutual pore blockage causes immobilized ions in the pores, resulting in a highly inhomogeneous IL density and bunched-up ions at the clogged pores. These results provide novel molecular-level insights into the dynamics of ILs in nanoconfinement, significantly enhancing the tunability of IL material properties.
These gels represent a class of soft materials with unique properties resembling soft biological tissues, such as tendons, ligaments, cartilage, muscles, and skin. [6] Hydrogels, obtained by cross-linking hydrophilic polymer chains in aqueous solutions, [7] possess the intrinsic lowmodulus nature and tissue-like properties, which make them applicable to tissue engineering, [8] optical devices, [9] biomedicine [10] and actuators. [11] In the pursuit of high performance, most research in the field of polymer gels has been focused on the chemical nature and polymer network architectures and their interactions, [12] such as ideal polymer networks, [13] interpenetrating polymer networks, [14] nano/micro composite polymer networks, [10,15] and hierarchically structured polymer networks. [16] The small molecule solvent is the second component of gels and is often considered to be a nonfunctional liquid that impregnates and expands a functional polymer network. Recently, ionic liquids have been used to replace water in hydrogels, [17] resulting in soft materials with long-term stability. [18] Multicomponent solvent systems, in which water is mixed with organic solvents (such as glycerol, [19] ethylene glycol [20] and sorbitol [21] ), were introduced into gel networks to maintain the performance of materials in harsh environments. However, because of the low molecular weight of solvents used and weak interactions with polymer networks, the reported Polymer gels, such as hydrogels, have been widely used in biomedical applications, flexible electronics, and soft machines. Polymer network design and its contribution to the performance of gels has been extensively studied. In this study, the critical influence of the solvent nature on the mechanical properties and performance of soft polymer gels is demonstrated. A polymer gel platform based on poly(ethylene glycol) (PEG) as solvent is reported (PEGgel). Compared to the corresponding hydrogel or ethylene glycol gel, the PEGgel with physically cross-linked poly(hydroxyethyl methacrylate-co-acrylic acid) demonstrates high stretchability and toughness, rapid self-healing, and long-term stability. Depending on the molecular weight and fraction of PEG, the tensile strength of the PEGgels varies from 0.22 to 41.3 MPa, fracture strain from 12% to 4336%, modulus from 0.08 to 352 MPa, and toughness from 2.89 to 56.23 MJ m -3 . Finally, rapid self-healing of the PEGgel is demonstrated and a self-healing pneumatic actuator is fabricated by 3D-printing. The enhanced mechanical properties of the PEGgel system may be extended to other polymer networks (both chemically and physically cross-linked). Such a simple 3D-printable, self-healing, and tough soft material holds promise for broad applications in wearable electronics, soft actuators and robotics.
We study the classical dynamics of many interacting particles in a periodically driven one-dimensional (1D) system. We show that under the rotating wave approximation (RWA), a short-distance 1D interaction (δ function or hard-core interaction), becomes a long-distance two-dimensional (2D) interaction which only depends on the distance in the phase space of the rotating frame. The RWA interaction describes the effect of the interaction on the slowly changing amplitude and phase of the oscillating particles, while the fast oscillations take on the role of a force carrier, which allows for interaction over much larger effective distances.
Metal–organic framework (MOF)-based separators in Li-ion batteries (LIBs) have the potential to improve the battery performance. The mobility and conduction of lithium and organic ionic liquids (ILs) in these materials acting as (quasi) solid-state electrolytes are crucial for the battery power output. Here, we investigate the mobility of a Li-based IL in MOF nanopores and unveil the details of the conduction mechanism by molecular dynamics (MD) simulations. A complex conductivity depending on the Li-IL loading and on the IL composition is observed. Most importantly, the presence of Li prevents the collapse of the conductivity at high IL loadings. The fully atomistic MD simulations including guest–guest and guest–host interactions elucidate the competing mechanisms: Li follows a Grotthuss-like conduction mechanism with large mobility. While at small pore fillings, the Li conduction is limited by the large distance between the anions facilitating the Grotthuss-like conduction; the conduction at high pore fillings is governed by field-induced concentration inhomogeneities. Because of the small MOF pore windows, which hinders the simultaneous passage of the large IL cations and anions in opposite directions, the IL shows field-induced MOF pore blocking and ion bunching. The regions of low anion concentration and high cation concentration represent barriers for Li, decreasing its mobility. In comparison to Li-free IL, the IL bunching effect is attenuated by the formation of charge-neutral Li-anion complexes, resulting in a tremendously increased conductivity at maximum pore filling. The exploitation of this mechanism may enhance the development of advanced batteries based on IL and nanoporous separators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.