Objective Cardiac damage and vascular dysfunction are major causes of morbidity and mortality in hypertension. In the present study, we explored the beneficial therapeutic effect of endoplasmic reticulum (ER) stress inhibition on cardiac damage and vascular dysfunction in hypertension. Methods and Results Mice were infused with angiotensin II (400 ng/kg per minute) with or without ER stress inhibitors (taurine-conjugated ursodeoxycholic acid and 4-phenylbutyric acid) for 2 weeks. Mice infused with angiotensin II displayed an increase in blood pressure, cardiac hypertrophy and fibrosis associated with enhanced collagen I content, transforming growth factor-β1 (TGF-β1) activity, and ER stress markers, which were blunted after ER stress inhibition. Hypertension induced ER stress in aorta and mesenteric resistance arteries (MRA), enhanced TGF-β1 activity in aorta but not in MRA, and reduced endothelial NO synthase phosphorylation and endothelium-dependent relaxation (EDR) in aorta and MRA. The inhibition of ER stress significantly reduced TGF-β1 activity, enhanced endothelial NO synthase phosphorylation, and improved EDR. The inhibition of TGF-β1 pathway improved EDR in aorta but not in MRA, whereas the reduction in reactive oxygen species levels ameliorated EDR in MRA only. Infusion of tunicamycin in control mice induced ER stress in aorta and MRA, and reduced EDR by a TGF-β1–dependent mechanism in aorta and reactive oxygen species–dependent mechanism in MRA. Conclusion ER stress inhibition reduces cardiac damage and improves vascular function in hypertension. Therefore, ER stress could be a potential target for cardiovascular diseases.
Objective We previously demonstrated that a reduced number of CD4+CD25+-regulatory T cells (Tregs) was associated with microvascular dysfunction in hypertension. However, the underlying mechanism by which Tregs regulate vascular endothelial function remains unknown. Methods and Results Control and interleukin (IL)-10–/– knockout mice were infused with angiotensin II (400 ng/kg/min) for 2 weeks (hypertensive [HT] and HT-IL-10–/–). Endothelium-dependent relaxation (EDR) in response to acetylcholine was significantly reduced in mesenteric resistance artery (MRA) from HT and HT-IL-10–/– compared with control and IL-10–/– mice. Importantly, the incubation of MRA from HT mice with the conditioned media of cultured Tregs, isolated from control mice, reduced NADPH oxidase activity and improved EDR, whereas no effect was observed in MRA from control mice incubated with the same media. These effects were reversed when MRAs were preincubated with IL-10 antibody or IL-10 receptor antagonist, whereas incubation with transforming growth factor-β receptor antagonist had no effect. The transfer of cultured Tregs, isolated from control mice, into HT-IL-10–/– mice reduced systolic blood pressure (SBP) and NADPH oxidase activity and improved EDR in MRA compared with untreated HT-IL-10–/– mice. In vivo treatment of HT mice with IL-10 (1000 ng/mouse) significantly reduced SBP and NADPH oxidase activity and improved EDR in MRA compared with untreated HT mice. The transfer of cultured Tregs, isolated from IL-10–/– mice, into HT mice did not reduce SBP or NADPH oxidase activity or improve EDR. The incubation of MRA from HT mice with apocynin improved EDR, whereas NADPH oxidase substrate attenuated EDR in MRA from control mice, which was reversed with exogenous IL-10. Conclusion These data demonstrate that IL-10 released from Tregs attenuates NADPH oxidase activity, which is a critical process in the improvement of microvascular endothelial function in hypertension, suggesting that Tregs/IL-10 could be a therapeutic target for treatment of vasculopathy in hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.