Analyses of possible synergies between energy recovery and water management are essential for achieving sustainable improvements in the performance of irrigation water networks. Improving the energy efficiency of water systems by hydraulic energy recovery is becoming an inevitable trend for energy conservation, emissions reduction, and the increase of profit margins as well as for environmental requirements. This paper presents the state of the art of hydraulic energy generation in drinking and irrigation water networks through an extensive review and by analyzing the types of machinery installed, economic and environmental implications of large and small hydropower systems, and how hydropower can be applied in water distribution networks (drinking and irrigation) where energy recovery is not the main objective. Several proposed solutions of energy recovery by using hydraulic machines increase the added value of irrigation water networks, which is an open field that needs to be explored in the near future.Keywords: irrigation water networks; water-energy nexus; renewable energy; sustainability and efficiency; hydropower solutions; water management Hydropower GenerationSociety's energy consumption worldwide has increased by up to 600% over the last century. This increase has been a direct result of population growth since the industrial revolution, in which energy has been provided mainly by fossil fuels. Nevertheless, today and in the near future, renewable energies are expected to be more widely implemented to help maintain sustainable growth and quality of life and, by 2040, to reduce energy consumption down to the 2010 levels [1].Sustainability must be achieved by using strategies that do not increase the overall carbon footprint, considering all levels of production (macro-and microscale) of the different supplies. These strategies' development has to be univocally linked to new technologies [2]. Special attention must be paid to those new strategies that are related to energy recovery. These new techniques have raised interesting environmental and economic advantages. Therefore, a deep knowledge of the water-energy nexus is crucial for quantifying the potential for energy recovery in any water system [3], and defining performance indicators to evaluate the potential level of energy savings is a key issue for sustainability, environmental, or even management solutions [4].Energy recovery, with the aim of harnessing the power dissipated by valves (in pressurized flow) or hydraulic jumps (in open channels), is becoming of paramount importance in water distribution
The use of pumps working as turbines (PATs) connected to the electric system, in the replacement of pressure reduction valves to reduce the excessive pressure in water distribution networks, have been studied for the last years. The introduction of PATs is very important in the water-energy nexus to promote the increase of the energy savings. As consequence, the majority of the water systems does not have access to the electrical grid and, therefore, the need to study the PATs operation off-grid is necessary. In this line, the novelty of this research is the application and optimization of a PAT in water systems when the recovery solution is off-grid type. To operate correctly, the induction machine requires an external source of reactive power, which is typically provided by the electrical grid. To supply the required reactive power, a bank of capacitors is installed at the machine terminals, so-called self-excited induction generator (SEIG). The analytical model, simulation and experimental works were performed, to analyse the SEIG behaviour. The results were applied in a SEIG-PAT system obtaining the global efficiency of the system for different speeds and loads. The global efficiency decreases 47% when off-grid operation, showing the need to optimize the electrical parameters of the generator to operate as off-grid with acceptable efficiency levels. In this framework, a tuning methodology for the SEIG capacitor bank values was developed to be automatically adjusted according to the operating point of the PAT to maximize its efficiency.
Abstract:Water irrigation systems are required to provide adequate pressure levels in any sort of network. Quite frequently, this requirement is achieved by using pressure reducing valves (PRVs). Nevertheless, the possibility of using hydraulic machines to recover energy instead of PRVs could reduce the energy footprint of the whole system. In this research, a new methodology is proposed to help water managers quantify the potential energy recovering of an irrigation water network with adequate conditions of topographies distribution. EPANET has been used to create a model based on probabilities of irrigation and flow distribution in real networks. Knowledge of the flows and pressures in the network is necessary to perform an analysis of economic viability. Using the proposed methodology, a case study has been analyzed in a typical Mediterranean region and the potential available energy has been estimated. The study quantifies the theoretical energy recoverable if hydraulic machines were installed in the network. Particularly, the maximum energy potentially recovered in the system has been estimated up to 188.23 MWh/year) with a potential saving of non-renewable energy resources (coal and gas) of CO 2 137.4 t/year.
Water management towards smart cities is an issue increasingly appreciated under financial and environmental sustainability focus in any water sector. The main objective of this research is to disclose the technological breakthroughs associated with water and energy use. A methodology is proposed and applied in a case study to analyze the benefits to develop smart water grids, showing the advantages offered by the development of control measures. The case study showed the positive results, particularly savings of 57 GWh and 100 Mm 3 in a period of twelve years when different measures from the common ones were developed for the monitoring and control of water losses in smart water management. These savings contributed to reducing the CO 2 emissions to 47,385 t CO 2-eq . Finally, in order to evaluate the financial effort and savings obtained in this reference systems (RS) network, the investment required in the monitoring and water losses control in a correlation model case (CMC) was estimated, and, as a consequence, the losses level presented a significant reduction towards sustainable values in the next nine years. Since the pressure control is one of the main issues for the reduction of leakage, an estimation of energy production for Portugal is also presented.Water 2020, 12, 58 2 of 13 water plays in sustainable development has become increasingly recognized; the management of water resources and the provision of services related to water continues to be minor in the scale of public perception and government priorities of several countries [4]. This lack of water resources is currently satisfied by the water transfer between basins, the desalinization, the regeneration of waste water, and the exploration of wells [5]. The implementation of more efficiency, the water and energy nexus, as well as the water loss control by the best pressure management and smart device implementation, would conduct a sustainable water sector. Smart Water ManagementSmart water management aims at the exploitation of water, at the regional or city level, on the basis of sustainability and self-sufficiency. This exploitation is carried out through the use of innovative technologies, such as information and control technologies and monitoring [6]. Hence, water management contributes to leakage reduction, water quality assurance, improved customer experience, and operational optimization, amongst other key performance benefits [7,8]. A smart city can be defined as the city in which an investment in human and social capital is performed, by encouraging the use of "Information and Communication Technology" (ICT) as an enabler of sustainable economic growth, providing improvements in the quality of life of consumers, and consequently, allowing better management of water resources and energy [9]. It is important to recognize that the concept of a smart city is not limited only to technological advances, but aims to promote socioeconomic development [10,11]. Through this model, a city can examine its current state and, in turn, identify the a...
The development of hydraulic and optimization models in water networks analyses to improve the sustainability and efficiency through the installation of micro or pico hydropower is swelling. Hydraulic machines involved in these models have to operate with different rotational speed, in order that in each instant to maximize the recovered energy. When the changes of rotational speed are determined using affinity laws, the errors can be significant. Detailed analyses are developed in this research through experimental tests to validate and propose new affinity laws in different reaction turbomachines. Once the errors have been analyzed, a methodology to modify the affinity laws is applied to radial and axial turbines. An empirical method to obtain the Best Efficiency Line (BEL) in proposed (i.e., based on all the Best Efficiency Points (BEPs) for different flows). When the experimental measurements and the calculated values by the empirical method are compared, the mean errors are reduced 81.81 %, 50%, and 86.67% for flow, head, and efficiency parameters, respectively. The knowledge of BEL allows managers to define the operation rules to reach the BEP for each flow, improving the energy efficiency in the optimization strategies to be adopted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.