Olfactory bulb (OB) interneurons are continuously renewed throughout an animal's lifespan. Despite extensive investigation of this phenomenon, little is known about bulbar circuitry functioning and olfactory performances under conditions of ablated arrival of new neurons into the adult OB. To address this issue we performed morphological, electrophysiological, and behavioral analysis in mice with suppressed bulbar neurogenesis. Infusion of the antimitotic drug AraC to the lateral ventricle via 28 d osmotic minipumps abolished the arrival of newly born neurons into the adult OB without affecting the total number of granule cells. The number, dendritic arborization, and spine density of interneurons generated in adulthood, before pump installation, were also not affected by AraC treatment. As a result of ablated neurogenesis, mitral cells-the principal output neurons in the OB-receive fewer inhibitory synapses, display reduced frequency of spontaneous IPSCs, experience smaller dendrodendritic inhibition, and exhibit decreased synchronized activity. Consequently, short-term olfactory memory was drastically reduced in AraC-treated mice. In contrast, olfactory performances of AraC-treated animals were undistinguishable from those of control mice in other odor-associated tests, such as spontaneous odor discrimination and long-term odor-associative memory tasks. Altogether, our data highlight the importance of adult neurogenesis for the proper functioning of the OB network and imply that new bulbar interneurons are involved in some, but not all, odor-associated tasks.
Many objects in natural visual scenes compete for attention. To identify the neural mechanisms necessary for visual attention, we made restricted lesions, affecting different quadrants of the visual field but leaving one quadrant intact, in extrastriate cortical areas V4 and TEO of two monkeys. Monkeys were trained to discriminate the orientation of a target grating surrounded by distracters. As distracter contrast increased, performance deteriorated in quadrants affected by V4 and TEO lesions, but not in the normal quadrant. Performance in affected quadrants was restored by increasing the contrast of the target relative to distracters. Thus, without V4 and TEO, visual attention is 'captured' by strong stimuli, regardless of their behavioral relevance.
Synaptic vesicles segregate into functionally diverse subpopulations within presynaptic terminals, yet there is no information about how this may occur. Here we demonstrate that a distinct subgroup of vesicles within individual glutamatergic, mossy fiber terminals contain vesicular zinc that is critical for the rapid release of a subgroup of synaptic vesicles during increased activity in mice. In particular, vesicular zinc dictates the Ca 2ϩ sensitivity of release during high-frequency firing. Intense synaptic activity alters the subcellular distribution of zinc in presynaptic terminals and decreases the number of zinc-containing vesicles. Zinc staining also appears in endosomes, an observation that is consistent with the preferential replenishment of zinc-enriched vesicles by bulk endocytosis. We propose that functionally diverse vesicle pools with unique membrane protein composition support different modes of transmission and are generated via distinct recycling pathways.
In the nervous system, zinc can influence synaptic responses and at extreme concentrations contributes to epileptic and ischaemic neuronal injury. Zinc can originate from synaptic vesicles, the extracellular space and from intracellular stores. In this study, we aimed to determine which of these zinc pools is responsible for the increased hippocampal excitability observed in zinc-depleted animals or following zinc chelation. Also, we investigated the source of intracellularly accumulating zinc in vulnerable neurons. Our data show that membranepermeable and membrane-impermeable zinc chelators had little or no effect on seizure activity in the CA3 region. Furthermore, extracellular zinc chelation could not prevent the accumulation of lethal concentrations of zinc in dying neurons following epileptic seizures. At the electron microscopic level, zinc staining significantly increased at the presynaptic membrane of mossy fibre terminals in kainic acid-treated animals. These data indicate that intracellular but not extracellular zinc chelators could influence neuronal excitability and seizure-induced zinc accumulation observed in the cytosol of vulnerable neurons.
Increased levels of intracellular zinc have been implicated in neuronal cell death in ischaemia, epilepsy and traumatic brain damage. However, decreases in zinc levels also lead to increased neuronal death and lowered seizure threshold. In the present study we investigated the physiological role of zinc in neurodegeneration and protection following epileptic seizures. Cells located in the strata oriens and lucidum of the CA3 region accumulated high concentrations of zinc and died. A decrease in zinc level could prevent the death of these neurones after seizures. Most of these cells were GABAergic interneurones. In contrast, neurones in the CA3 pyramidal cell layer accumulated moderate amounts of zinc and survived. Zinc chelation led to an increase in the mortality rate of these cells. Furthermore, in these cells low concentrations of intracellular zinc activated Akt (protein kinase B), thus providing protection against neurodegeneration. These results demonstrate that intracellularly accumulated zinc can be neurotoxic or neuroprotective depending on its concentration. This dual action is cell type specific.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.