The novel coronavirus disease 2019 (COVID-19) is a contagious disease that has caused thousands of deaths and infected millions worldwide. Thus, various technologies that allow for the fast detection of COVID-19 infections with high accuracy can offer healthcare professionals much-needed help. This study is aimed at evaluating the effectiveness of the state-of-the-art pretrained Convolutional Neural Networks (CNNs) on the automatic diagnosis of COVID-19 from chest X-rays (CXRs). The dataset used in the experiments consists of 1200 CXR images from individuals with COVID-19, 1345 CXR images from individuals with viral pneumonia, and 1341 CXR images from healthy individuals. In this paper, the effectiveness of artificial intelligence (AI) in the rapid and precise identification of COVID-19 from CXR images has been explored based on different pretrained deep learning algorithms and fine-tuned to maximise detection accuracy to identify the best algorithms. The results showed that deep learning with X-ray imaging is useful in collecting critical biological markers associated with COVID-19 infections. VGG16 and MobileNet obtained the highest accuracy of 98.28%. However, VGG16 outperformed all other models in COVID-19 detection with an accuracy, F1 score, precision, specificity, and sensitivity of 98.72%, 97.59%, 96.43%, 98.70%, and 98.78%, respectively. The outstanding performance of these pretrained models can significantly improve the speed and accuracy of COVID-19 diagnosis. However, a larger dataset of COVID-19 X-ray images is required for a more accurate and reliable identification of COVID-19 infections when using deep transfer learning. This would be extremely beneficial in this pandemic when the disease burden and the need for preventive measures are in conflict with the currently available resources.
The Combinatorial Optimization Problem (COPs) is one of the branches of applied mathematics and computer sciences, which is accompanied by many problems such as Facility Layout Problem (FLP), Vehicle Routing Problem (VRP), etc. Even though the use of several mathematical formulations is employed for FLP, Quadratic Assignment Problem (QAP) is one of the most commonly used. One of the major problems of Combinatorial NP-hard Optimization Problem is QAP mathematical model. Consequently, many approaches have been introduced to solve this problem, and these approaches are classified as Approximate and Exact methods. With QAP, each facility is allocated to just one location, thereby reducing cost in terms of aggregate distances weighted by flow values. The primary aim of this study is to propose a hybrid approach which combines Discrete Differential Evolution (DDE) algorithm and Tabu Search (TS) algorithm to enhance solutions of QAP model, to reduce the distances between the locations by finding the best distribution of N facilities to N locations, and to implement hybrid approach based on discrete differential evolution (HDDETS) on many instances of QAP from the benchmark. The performance of the proposed approach has been tested on several sets of instances from the data set of QAP and the results obtained have shown the effective performance of the proposed algorithm in improving several solutions of QAP in reasonable time. Afterwards, the proposed approach is compared with other recent methods in the literature review. Based on the computation results, the proposed hybrid approach outperforms the other methods.
The facility layout problem (FLP) is a very important class of NP-hard problems in operations research that deals with the optimal assignment of facilities to minimize transportation costs. The quadratic assignment problem (QAP) can model the FLP effectively. One of the FLPs is the hospital facility layout problem that aims to place comprehensive clinics, laboratories, and radiology units within predefined boundaries in a way that minimizes the cost of movement of patients and healthcare personnel. We are going to develop a hybrid method based on discrete differential evolution (DDE) algorithm for solving the QAP. In the existing DDE algorithms, certain issues such as premature convergence, stagnation, and exploitation mechanism have not been properly addressed. In this study, we first aim to discover the issues that make the current problem worse and to identify the best solution to the problem, and then we propose to develop a hybrid algorithm (HDDETS) by combining the DDE and tabu search (TS) algorithms to enhance the exploitation mechanism in the DDE algorithm. Then, the performance of the proposed HDDETS algorithm is evaluated by implementing on the benchmark instances from the QAPLIB website and by comparing with DDE and TS algorithms on the benchmark instances. It is found that the HDDETS algorithm has better performance than both the DDE and TS algorithms where the HDDETS has obtained 42 optimal and best-known solutions from 56 instances, while the DDE and TS algorithms have obtained 15 and 18 optimal and best-known solutions out of 56 instances, respectively. Finally, we propose to apply the proposed algorithm to find the optimal distributions of the advisory clinics inside the Azadi Hospital in Iraq that minimizes the total travel distance for patients when they move among these clinics. Our application shows that the proposed algorithm could find the best distribution of the hospital’s rooms, which are modeled as a QAP, with reduced total distance traveled by the patients.
The combinatorial optimization problems are very important in the branch of optimization or in the field of operation research in mathematics. The quadratic assignment problem (QAP) is in the category of facilities location problems and is considered as one of the significant complex's combinatorial optimization problems since it has many applications in the real world. The QAP is involved in allocating N facilities to N locations with specified distances amid the locations and the flows between the facilities. The modified discrete differential evolution algorithm has been presented in this study based on the crossover called uniform like a crossover (ULX). The proposed algorithm used to enhance the QAP solutions through finding the best distribution of the N facilities to N locations with the minimized total cost. The employed criteria in this study for the evaluation of the algorithm were dependent on the accuracy of the algorithm by using the relative percent deviation (PRD). The proposed algorithm was applied to 41 different sets of the benchmark QAPLIB, while the obtained results indicated that the proposed algorithm was more efficient and accurate compared with Tabu Search, Differential Evolution, and Genetic algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.