A fast and convenient method for on-line monitoring of the extraction of heavy metals from solid (environmental) matrixes was developed. By the incorporation of microcartridges filled with dried and pulverized solid samples into the conduits of a flow system and appropriate selection of the liquid flowing through the cartridge, information about the degree of leaching and in particular of the kinetics of the leaching process are obtained. The method was optimized for determination of different metals of environmental concern using in-line detection by FAAS and ICPMS.
A two-stage thermal desorption/secondary electrospray ionization/time-of-flight mass spectrometry for faster targeted breath profiling has been studied. A new secondary electrospray ionization (SESI) source was devised to constrain the thermal desorption plume and promote efficient mixing in the ionization region. Further, a chromatographic pre-separation stage was introduced to suppress interferences from siloxanes associated with thermal desorption profiles of exhaled breath samples. In vitro tests with 5-nonanone indicated an increased sensitivity and a lowered limit-of-detection, both by a factor of ~4, the latter to an on-trap mass of 14.3 ng, equivalent to a sampled breath concentration of 967 pptv. Analysis of the mass spectrometric responses from 20 breath samples acquired sequentially from a single participant indicated enhanced reproducibility (reduced relative standard deviations (RSD) for 5-nonanone, benzaldehyde and 2-butanone were 28 %, 16% and 14% respectively. The corresponding values for an open SESI source were that 5-nonanone was not detected, with %RSD of 39% for benzaldehyde and 31% for 2-butanone). The constrained source with chromatographic pre-separation resulted in an increase in the number of detectable volatile organic compounds (VOCs) from 260 mass spectral peaks with an open SESI source to 541 peaks with the constrained source with pre-separation. Most of the observed VOCs were present at trace levels, at less than 2.5% of the intensity of the base peak. Seventeen 2.5 dm3 distal breath samples were collected from asthma patients and healthy controls respectively, and subjected to comparative high-throughput screening using thermal desorption/SESI/time-of-flight mass spectrometry (TD-SESI-ToFMS). Breath metabolites were detected by using a background siloxane ion (hexamethylcyclotrisiloxane m/z 223.0642) as an internal lockmass. Eleven breath metabolites were selected from the breath research literature and successfully targeted. These data reinforce the proposition that TD-SESI-MS has potential for development as a rapid screening method for disease stratification and targeted metabolism profiling.
The application of a recently proposed microanalytical flow-through system for on-line sequential extraction of heavy metals from solid samples of environmental interest is described. Using various extraction schemes (a nitric acid scheme, a two-stage extraction scheme using two reagents applied in the BCR procedure) and comparison with the common batch sequential BCR procedure, the suitability of the system for fast screening of solid environmental samples is demonstrated. By pumping leaching agents sequentially through the sample held in a micro cartridge, the different metal fractions present can be assessed in less than an hour. Method evaluation was performed using SRM 1648 urban particulate matter and BCR 701 lake sediment reference material certified for extractable metals. The need for and design of laboratory internal reference material suitable for simulating the natural (dynamic) processes of metal release into the environment is also discussed. For the first time correlation is sought between fractionation techniques and physiologically based methods for assessment of the bioaccessibility of metals in biomatrices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.