Despite the great efforts for better treatment options for diffuse large B-cell lymphoma (DLBCL) (most common form of non-Hodgkin lymphoma, NHL) to treat and prevent relapse, it continues to be a challenge. Here, we present an overview of DLBCL and address the diagnostic assays and molecular techniques used in its diagnosis, role of biomarkers in detection, treatment of early and advanced stage DLBCL, and novel drug regimens. We discuss the significant biomarkers that have emerged as essential tools for stratifying patients according to risk factors and for providing insights into the use of more targeted and individualized therapeutics. We discuss techniques such as gene expression studies, including next-generation sequencing, which have enabled a more understanding of the complex pathogenesis of DLBCL and have helped determine molecular targets for novel therapeutic agents. We examine current treatment approaches, outline the findings of completed clinical trials, and provide updates for ongoing clinical trials. We highlight clinical trials relevant to the significant fraction of DLBCL patients who present with complex cases marked by high relapse rates. Supported by an increased understanding of targetable pathways in DLBCL, clinical trials involving specialized combination therapies are bringing us within reach the promise of an effective cure to DLBCL using precision medicine. Optimization of therapy remains a crucial objective, with the end goal being a balance between high survival rates through targeted and personalized treatment while reducing adverse effects in DLBCL patients of all subsets.
Battery energy storage systems (BESSs) are being deployed on electrical grids in significant numbers to provide fast-response services. These systems are normally procured by the end user, such as a utility grid owner or independent power producer. This paper introduces a novel research project in which a research institution has purchased a 1 MW BESS and turned ownership over to a utility company under an agreement that allowed the institution to perform experimentation and data collection on the grid for a multi-year period. This arrangement, along with protocols governing experimentation, has created a unique research opportunity to actively and systematically test the impact of a BESS on a live island grid. The 2012 installation and commissioning of the BESS was facilitated by a partnership between the Hawaii Natural Energy Institute (HNEI) and the utility owner, the Hawaiian Electric and Light Company (HELCO). After the test period ended, HELCO continued to allow data collection (including health testing). In 2018, after 8500 equivalent cycles, the BESS continues to operate within specifications. HNEI continues to provide HELCO with expertise to aid with diagnostics as needed. Details about the BESS design, installation, experimental protocols, initial results, and lessons learned are presented in this paper.
In response to increasing integration of renewable energy sources on electric grid systems, battery energy storage systems (BESSs) are being deployed world-wide to provide grid services, including fast frequency regulation. Without mitigating technologies, such as BESSs, highly variable renewables can cause operational and reliability problems on isolated grids. Prior to the deployment of a BESS, an electric utility company will typically perform modeling to estimate cost benefits and determine grid impacts. While there may be a comparison of grid operations before and after BESS installation, passive monitoring typically does not provide information needed to tune the BESS such that the desired services are maintained, while also minimizing the cycling of the BESS. This paper presents the results of testing from a live grid using a method that systematically characterizes the performance of a BESS. The method is sensitive enough to discern how changes in tuning parameters effect both grid service and the cycling of the BESS. This paper discusses the application of this methodology to a 1 MW BESS regulating the entire island of Hawaii (180 MW peak load) in-situ. Significant mitigation of renewable volatility was demonstrated while minimizing BESS cycling.
Grid-tied energy storage will play a key role in the reduction of carbon emissions. Systems based on Li-ion batteries could be good candidates for the task, especially those using lithium titanate negative electrodes. In this work, we will present the study of seven years of usage of a lithium titanate-based battery energy storage system on an isolated island grid. We will show that, even after seven years, the modules’ capacity loss is below 10% and that overall the battery is still performing within specifications. From our results, we established a forecast based on the internal degradation mechanisms of the hottest and coldest modules to show that the battery full lifetime on the grid should easily exceed 15 years. We also identified some inaccuracies in the online capacity estimation methodology which complicates the monitoring of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.