Background: Elucidation of the highly forward scattering of photons in random media such as biological tissue is crucial for further developments of optical imaging using photon transport models. We evaluated length and time scales of the photon scattering in three-dimensional media. Methods: We employed analytical solutions of the time-dependent radiative transfer, M-th order delta-Eddington, and photon diffusion equations (RTE, dEM, and PDE). We calculated the fluence rates at different source-detector distances and optical properties. Results: We found that the zeroth order dEM and PDE, which approximate the highly forward scattering to the isotropic scattering, are valid in longer length and time scales than approximately 10 / μ t ′ and 40 / μ t ′ v , respectively, where μ t ′ is the reduced transport coefficient and v the speed of light in a medium. The first and second order dEM, which approximate the highly forward-peaked phase function by the first two and three Legendre moments, are valid in the longer scales than approximately 4.0 / μ t ′ and 6.3 / μ t ′ v ; 2.8 / μ t ′ and 3.5 / μ t ′ v , respectively. The boundary conditions less influence the length scales, while they reduce the times scales from those for bulk at the longer length scale than approximately 4.0 / μ t ′ . Conclusion: Our findings are useful for constructions of accurate and efficient photon transport models. We evaluated length and time scales of the highly forward scattering of photons in various kinds of three-dimensional random media by analytical solutions of the radiative transfer, M-th order delta-Eddington, and photon diffusion equations.
We developed model equations of light scattering properties and a characteristic time of light propagation for polydisperse colloidal suspensions at different volume fractions. By the model equations, we examined numerical results using the first-order (dependent) scattering theory (FST) and radiative transfer theory in 600-980 nm wavelength. The model equations efficiently treat the interference of electric fields scattered from colloidal particles by a single effective coefficient, providing fast computation. Meanwhile, the FST provides accurate but complicated treatment. We found the interference effects on the scattering properties and characteristic time depend linearly on wavelength. Dimensionless analysis showed a simple mechanism of the interference effects, independently of wavelength and source-detector distance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.