The bacterial strain MJ01 was isolated from stock tank water of one of the Iranian south oil field production facilities. The 16S rRNA gene of isolate, MJ01, showed 99% similarity to Bacillus subtilis. The results revealed that biosurfactant produced by this strain was lipopeptide-like surfactin based on FTIR analysis. Critical micelle concentration of produced surfactin in distilled water was 0.06 g/l. Wettability study showed that at zero salinity surfactin can change original oil-wet state to water-wet state, but in seawater salinity it cannot modify the wettability significantly. To utilize this biosurfactant in ex situ MEOR process, economical and reservoir engineering technical parameters were considered to introduce a new optimization strategy using the response surface methodology. Comparing the result of this optimization strategy with the previous optimization research works was shown that significant save in use of nutrients is possible by using this medium. Furthermore, using this method leads to less formation damage due to the incompatibility of injecting fluid and formation brine, and less formation damage due to the bioplugging.
Nitrate treatment has been widely used in various seawater injection projects to treat biologic sulfate reduction or reservoir souring. To design a promising nitrate treatment plan, it is essential to have a comprehensive understanding of reactions that represent the microbial communities of the reservoir and mechanisms through which the souring process is inhibited. We employ a new approach of evaluating different reaction pathways to design reaction models that reflect governing microbial processes in a set of batch and flow experiments. Utilizing the designed models, we suggest dissimilatory nitrate reduction to ammonium is the main reaction pathway. Additionally, we illustrate nitrite inhibition is the major mechanism of nitrate treatment process; independent of nitrate reduction being autotrophic or heterotrophic. We introduce an inhibitory nitrate injection concentration that can inhibit souring regardless of nitrite inhibition effect and the distance between injection and production wells. Furthermore, we demonstrate that the ratio of the nitrite-nitrate reduction rate can be used to estimate nitrate treatment effectiveness. Our findings in regard to importance of nitrite inhibition mechanism and the inhibitory nitrate concentration are in accordance with the field observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.