In recent years, the number of bedridden patients, including amyotrophic lateral sclerosis (ALS) patients, has been increasing with the aging of the population, owing to advances in medical and long-term care technology. Eye movements are physical functions that are relatively difficult to be affected, even if the symptoms of ALS progress. Focusing on this point, in this paper, in order to improve the quality of life (QOL) of bedridden patients, including ALS patients, we propose a drone system connected to the Internet that can be remotely controlled using only their eyes. In order to control the drone by using only their eyes, a control screen and an eye-tracking device were used in this system. By using this system, for example, the patients in New York can operate the drone in Kyoto using only their eyes, enjoy the scenery, and talk with people in Kyoto. In this drone system, since a time delay could occur depending on the Internet usage environment, agile operation is required for remotely controlling the drone. Therefore, we introduce the design of the control screen focused on remote control operability and human eye movements (microsaccades). Furthermore, considering the widespread future use of this system, it is desirable to use a commercial drone. Accordingly, we describe the design of a joystick control device to physically control the joysticks of various drone controllers. Finally, we present experimental results to verify the effectiveness of this system, including the control screen and the joystick control device.
In many countries, the rate of aging in their populations is rapidly increasing. We expect the number of patients with amyotrophic lateral sclerosis (ALS) in bedridden state to increase. The patients are restricted in many aspects of their daily lives, including limited vision to the outside world except only what they can see from the inside of their rooms. This paper proposes an unmanned aerial vehicle (UAV) system using an eye-tracking device for ALS patients in order to improve their The UAV has a camera and the camera images are displayed on a control screen. The patient's gaze position is detected by the eye-tracking device. By using this system, the patient will be able to control the UAV by moving his/her eyes while he/she looks at the camera images on the control screen. Firstly, we explain the research background. Secondly, we describe the overview of the UAV system. Thirdly, we explain the design method of the control screen considering field of vision, eye movements, and eye strain in order to reduce operational errors. Finally, we present experimental results to verify the effectiveness of this system and the control screen.quality of life (QOL). This system consists of a UAV, a control screen, an eye-tracking device, a computer, and a transmitter. *6 徳島大学大学院 医歯薬学研究部 看護管理学分野 (〒770-8509 徳島県徳島市蔵本町 3-18-15)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.