Characterizing and controlling electronic properties of quantum materials require direct measurements of nonequilibrium electronic band structures over large regions of momentum space. Here, we demonstrate an experimental apparatus for time-and angle-resolved photoemission spectroscopy using high-order harmonic probe pulses generated by a robust, moderately high power (20 W) Yb:KGW amplifier with a tunable repetition rate between 50 and 150 kHz. By driving high-order harmonic generation (HHG) with the second harmonic of the fundamental 1025 nm laser pulses, we show that single-harmonic probe pulses at 21.8 eV photon energy can be effectively isolated without the use of a monochromator. The on-target photon flux can reach 5 × 10 10 photons/s at 50 kHz, and the time resolution is measured to be 320 fs. The relatively long pulse duration of the Yb-driven HHG source allows us to reach an excellent energy resolution of 21.5 meV, which is achieved by suppressing the space-charge broadening using a low photon flux of 1.5 × 10 8 photons/s at a higher repetition rate of 150 kHz. The capabilities of the setup are demonstrated through measurements in the topological semimetal ZrSiS and the topological insulator Sb 2−x GdxTe 3 .
We have developed an experimental setup for ultrafast angle-resolved photoemission spectroscopy based on high-order harmonic generation from a ~:KGW laser. Using nonlinear compression, we show that the time resolution can be improved to "30 fs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.