<abstract><p>HIV-1 is a virus that destroys CD4 + cells in the body's immune system, causing a drastic decline in immune system performance. Analysis of HIV-1 gene expression data is urgently needed. Microarray technology is used to analyze gene expression data by measuring the expression of thousands of genes in various conditions. The gene expression series data, which are formed in three dimensions, are analyzed using triclustering. Triclustering is an analysis technique for 3D data that aims to group data simultaneously into rows and columns across different times/conditions. The result of this technique is called a tricluster. A tricluster is a subspace in the form of a subset of rows, columns, and time/conditions. In this study, we used the $ \delta $-Trimax, THD Tricluster, and MOEA methods by applying different measures, namely, transposed virtual error, the New Residue Score, and the Multi Slope Measure. The gene expression data consisted of 22,283 probe gene IDs, 40 observations, and four conditions: normal, acute, chronic, and non-progressor. Tricluster evaluation was carried out based on intertemporal homogeneity. An analysis of the probe ID gene that affects AIDS was carried out through this triclustering process. Based on this analysis, a gene symbol which is biomarkers associated with AIDS due to HIV-1, HLA-C, was found in every condition for normal, acute, chronic, and non-progressive HIV-1 patients.</p></abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.