The effect of population density on the initial spread of the novel Covid-19 virus has been evaluated using the numerical data of fifty pioneer adopting countries in their first thirty days experience with the disease. The fifty countries were curdled into ten groups that each of them possesses an average population density and each group's virus's spread was modeled in a two-dimensional graph with the use of MATLAB curve fitting. The modeling is done based on the exponential growth equation. The stringency index model was also utilized a source of analysis regarding the government responses of the groups in study. Finally, population density was found to be not a significant contributor in controlling Covid-19 epidemic in the very first month of spread; however, countries with denser populations were found better to adopt stricter regulations especially in the first month of spread as Covid-19 outbreak and total number of cases is proportional to their populations numerics.
Due to the COVID-19 pandemic and the development of educational technology, e-learning has become essential in the educational process. However, the adoption of e-learning in sectors such as engineering, science, and technology faces a particular challenge as it needs a special Laboratory Learning Management System (LLMS) capable of supporting online lab activities through virtual and controlled remote labs. One of the most challenging tasks in designing such LLMS is how to assess a student's performance while an experiment is being conducted and how stuttering students can be automatically detected while experimenting and providing the appropriate assistance. For this, a generic technique based on Artificial Intelligence (AI) is proposed in this paper for assessing student performance while conducting online labs and implemented as a performance evaluation module in the LLMS. The performance evaluation module is designed to automatically detect the student performance during the experiment run time and triggers the LLMS virtual assistant service to provide struggling students with the appropriate help when they need it. Also, the proposed performance assessment technique is used during the lab exam sessions to support the automatic grading process conducted by the LLMS Auto-Grading Module. The proposed performance evaluation technique has been developed based on analyzing the student's mouse dynamics to work generally with any type of simulation or control software used by virtual or remote controlled laboratories; without the need for special interfacing. The study has been applied to a novel dataset built by the course instructors and students simulating a circuit on TinkerCad. Using mouse dynamics fetching, the system extracts features and evaluates them to determine if the student has built the experiment steps in the right way or not. A comparison study has been developed between different Machine Learning (ML) models and a number of performance metrics are calculated. The study confirmed that Artificial Neural Network (ANN) and Support Vector Machine (SVM) are the best models to be used for automatically evaluating student performance while conducting the online labs with a precision reaching up to 91%.
There are many cancer patients, especially breast cancer patients as it is the most common type of cancer. Due to the huge number of breast cancer patients, many breast cancer-focused hospitals aren't able to process the huge number of patients and might expose some women to late stages of cancer. Thus, the automation of the process can help these hospitals in speeding up the process of cancer detection. In this paper, the authors test several machine learning models such as k-nearest neighbours (KNN), support vector machine (SVM), and artificial neural network (ANN). They then compare their accuracies and losses with themselves and other models that have been developed by other researchers to see whether their approach is efficient or not and to decide what machine learning algorithm is best to use.
There are many cancer patients, especially breast cancer patients as it is the most common type of cancer. Due to the huge number of breast cancer patients, many breast cancer-focused hospitals aren't able to process the huge number of patients and might expose some women to late stages of cancer. Thus, the automation of the process can help these hospitals in speeding up the process of cancer detection. In this paper, the authors test several machine learning models such as k-nearest neighbours (KNN), support vector machine (SVM), and artificial neural network (ANN). They then compare their accuracies and losses with themselves and other models that have been developed by other researchers to see whether their approach is efficient or not and to decide what machine learning algorithm is best to use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.