Due to reliability and performance considerations, employing multiple software-defined networking (SDN) controllers is known as a promising technique in Wireless Sensor Networks (WSNs). Nevertheless, employing multiple controllers increases the inter-controller synchronization overhead. Therefore, optimal placement of SDN controllers to optimize the performance of a WSN, subject to the maximum number of controllers, determined based on the synchronization overhead, is a challenging research problem. In this paper, we first formulate this research problem as an optimization problem, then to address the optimization problem, we propose the Cuckoo Placement of Controllers (Cuckoo-PC) algorithm. Cuckoo-PC works based on the Cuckoo optimization algorithm which is a meta-heuristic algorithm inspired by nature. This algorithm seeks to find the global optimum by imitating brood parasitism of some cuckoo species. To evaluate the performance of Cuckoo-PC, we compare it against a couple of state-of-the-art methods, namely Simulated Annealing (SA) and Quantum Annealing (QA). The experiments demonstrate that Cuckoo-PC outperforms both SA and QA in terms of the network performance by lowering the average distance between sensors and controllers up to 13% and 9%, respectively. Comparing our method against Integer Linear Programming (ILP) reveals that Cuckoo-PC achieves approximately similar results (less than 1% deviation) in a noticeably shorter time.
This study proposes a data-driven methodology for modeling power and hydrogen generation of a sustainable energy converter. The wave and hydrogen production at different wave heights and wind speeds are predicted. Furthermore, this research emphasizes and encourages the possibility of extracting hydrogen from ocean waves. By using the extracted data from the FLOW-3D software simulation and the experimental data from the special test in the ocean, the comparison analysis of two data-driven learning methods is conducted. The results show that the amount of hydrogen production is proportional to the amount of generated electrical power. The reliability of the proposed renewable energy converter is further discussed as a sustainable smart grid application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.