The present paper proposes a novel multi‐objective robust fuzzy fractional order proportional–integral–derivative (PID) controller design for nonlinear hydraulic turbine governing system (HTGS) by using evolutionary computation techniques. The fuzzy fractional order PID (FOPID) controller takes closed loop error and its fractional derivative as inputs and performs fuzzy logic operations. Then, it produces the output through the fractional order integrator. The predominant advantages of the proposed controller are its capability to handle complex nonlinear processes like HTGS in heuristic manner, due to fuzzy incorporation and extending an additional flexibility in tuning the order of fractional derivative/integral terms to enhance the closed loop performance. The present work formulates the optimal tuning problem of fuzzy FOPID controller for HTGS as a multi‐objective one instead of a traditional single‐objective one towards satisfying the conflicting criteria such as less settling time and minimum damped oscillations simultaneously to ensure the improved dynamic performance of HTGS. The multi‐objective evolutionary computation techniques such as non‐dominated sorting genetic algorithm‐II (NSGA‐II) and modified NSGA‐II have been utilized to find the optimal input/output scaling factors of the proposed controller along with the order of fractional derivative/integral terms for HTGS system under no load and load turbulence conditions. The performance of the proposed fuzzy FOPID controller is compared with PID and FOPID controllers. The simulations have been conducted to test the tracking capability and robust performance of HTGS during dynamic set point changes for a wide range of operating conditions and model parameter variations, respectively. The proposed robust fuzzy FOPID controller has ensured better fitness value and better time domain specifications than the PID and FOPID controllers, during optimization towards satisfying the conflicting objectives such as less settling time and minimum damped oscillations simultaneously, due to its special inheritance of fuzzy and FOPID properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.