An optimized synthesis of nanometer silica particles via hydrolysis and condensation of tetraethylorthosilicate (TEOS) is described. At the optimum experimental conditions, homogeneous and stable silica nanoparticles with mean particles size of 7.1 ± 1.9 nm were obtained. The particle size is in a good agreement with primary particles. The size, size distribution (SD) and the yield of silica were controlled by the concentration of the reactants, ammonia feed rate, temperature and mixing mode. The increase in TEOS concentration resulted in bigger and multi-model distributed powder, while high temperature and magnetic agitation produced a highly aggregated powder. However, higher H2O/TEOS ratio and lower ammonia concentration at slower feed rate produced particles in the range of 10-14 nm. It was also found that the concentration of silanol group increased significantly with the decrease in particle size, especially below 40 nm. The optimized technique developed is simple and reproducible, affording a high yield of ∼75% of nanometer silica in a primary size range.
A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative was carried out using NMR spectroscopy techniques. The overlapping 1H-NMR signals of ENR-50 at δ 1.56, 1.68–1.70, 2.06, 2.15–2.17 ppm were successfully assigned. In this work, the 13C-NMR chemical shift assignments of ENR-50 were consistent to the previously reported work. A cyclic dithiocarbonate derivative of ENR-50 was synthesized from the reaction of purified ENR-50 with carbon disulfide (CS2), in the presence of 4-dimethylaminopyridine (DMAP) as catalyst at reflux temperature. The cyclic dithiocarbonate formation involved the epoxide ring opening of the ENR-50. This was followed by insertion of the C–S moiety of CS2 at the oxygen attached to the quaternary carbon and methine carbon of epoxidized isoprene unit, respectively. The bands due to the C=S and C–O were clearly observed in the FTIR spectrum while the 1H-NMR spectrum of the derivative revealed the peak attributed to the methylene protons had split. The 13C-NMR spectrum of the derivative further indicates two new carbon peaks arising from the >C=S and quaternary carbon of cyclic dithiocarbonate. All other 1H- and 13C-NMR chemical shifts of the derivative remain unchanged with respect to the ENR-50.
Protonat ion ofBis[ 1,2-bis( diethyl phosphino)ethane] bis( din it rogen)molybdenum and -tungsten with Fluoroboric Acid-Diethyl Ether (1 / I ) in Benzene; Crystal and Molecular Structure of Bis[l,2bis( diet hyl phosp hino)ethane] f luoro [ hydrazido( 2-)]tungsten Tetraf luoro borate t J.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.