This paper proposes an isolated full bridgeless single stage alternating current-direct current (AC-DC) converter. The proposed converter integrates the operation of a pure bridgeless power factor correction with input boost inductor cascaded with center-tap transformer and half bridge circuit. In addition, the bidirectional switch can be driven with single control signal which further simplifies the controller circuit. It is also proved that this converter reduces the total number of components compared to some conventional circuit and semi-bridgeless circuit topologies. The circuit operation of the proposed circuit is then confirmed with the small signal model, large signal model, circuit simulation and then verified experimentally. It is designed and tested at 115 Vac, 50 Hz of input supply, and 20 Vdc output voltage with maximum output power of 100 W. In addition, the crossover distortion at the input current is minimize at high input line frequency.
A small-signal analysis of a single-stage bridgeless boost half-bridge alternating current/direct current (AC/DC) Converter with bidirectional switches is performed using circuit averaging method. The comprehensive approach to develop the small signal model from the steady state analysis is discussed. The small-signal model is then simulated with MATLAB Simulink. The small-signal model is verified through the comparison of the bode-plot obtained from MATLAB Simulink and the simulated large signal model in piecewise linear electrical circuit simulation (PLECS). The mathematical model obtain from the small-signal analysis is then used to determine the proportional gain K_p and integral gain K_i. In addition, the switch large-signal model is developed by considering the current and voltage waveforms during load transients and steady-state conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.