Standard imaging techniques do not get as much information from a scene as light-field imaging. Light-field (LF) cameras can measure the light intensity reflected by an object and, most importantly, the direction of its light rays. This information can be used in different applications, such as depth estimation, in-plane focusing, creating full-focused images, etc. However, standard key-point detectors often employed in computer vision applications cannot be applied directly to plenoptic images due to the nature of raw LF images. This work presents an approach for key-point detection dedicated to plenoptic images. Our method allows using of conventional key-point detector methods. It forces the detection of this key-point in a set of micro-images of the raw LF image. Obtaining this important number of key-points is essential for applications that require finding additional correspondences in the raw space, such as disparity estimation, indirect visual odometry techniques, and others. The approach is set to the test by modifying the Harris key-point detector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.