Sequencing the entire RNA molecule leads to a better understanding of the transcriptome architecture. SMARTer (Switching Mechanism at 5′-End of RNA Template) is a technology aimed at generating full-length cDNA from low amounts of mRNA for sequencing by short-read sequencers such as those from Illumina. However, short read sequencing such as Illumina technology includes fragmentation that results in bias and information loss. Here, we built a pipeline, UNAGI or UNAnnotated Gene Identifier, to process long reads obtained with nanopore sequencing and compared this pipeline with the standard Illumina pipeline by studying the Saccharomyces cerevisiae transcriptome in full-length cDNA samples generated from two different biological samples: haploid and diploid cells. Additionally, we processed the long reads with another long read tool, FLAIR. Our strand-aware method revealed significant differential gene expression that was masked in Illumina data by antisense transcripts. Our pipeline, UNAGI, outperformed the Illumina pipeline and FLAIR in transcript reconstruction (sensitivity and specificity of 80% and 40% vs. 18% and 34% and 79% and 32%, respectively). Moreover, UNAGI discovered 3877 unannotated transcripts including 1282 intergenic transcripts while the Illumina pipeline discovered only 238 unannotated transcripts. For isoforms profiling, UNAGI also outperformed the Illumina pipeline and FLAIR in terms of sensitivity (91% vs. 82% and 63%, respectively). But the low accuracy of nanopore sequencing led to a closer gap in terms of specificity with Illumina pipeline (70% vs. 63%) and to a huge gap with FLAIR (70% vs 0.02%).
Background
Cancer stem cells (CSCs) are generated under irregular microenvironment in vivo, of which mimic is quite difficult due to the lack of enough information of the factors responsible for cancer initiation. Here, we demonstrated that mouse induced pluripotent cells (miPSCs) reprogrammed from normal embryonic fibroblasts were susceptible to the microenvironment affected by cancer cells to convert into CSCs in vivo.
Methods
Three different pancreatic cancer line cells, BxPC3, PANC1, and PK8 cells were mixed with miPSCs and subcutaneously injected into immunodeficient mice. Tumors were evaluated by histological analysis and cells derived from iPSCs were isolated and selected from tumors. The isolated cells were characterized for cancer stem cell characters in vitro and in vivo as well as their responses to anticancer drugs. The impact of co-injection of iPSCs with cancer cells on transcriptome and signaling pathways of iPSCs was investigated.
Results
The injection of miPSCs mixed with human pancreatic cancer cells into immunodeficient mice maintained the stemness of miPSCs and changed their phenotype. The miPSCs acquired CSC characteristics of tumorigenicity and self-renewal. The drug responses and the metastatic ability of CSCs converted from miPSCs varied depending on the microenvironment of cancer cells. Interestingly, transcriptome profiles of these cells indicated that the pathways related with aggressiveness and energy production were upregulated from the levels of miPSCs.
Conclusions
Our result suggests that cancer-inducing microenvironment in vivo could rewire the cell signaling and metabolic pathways to convert normal stem cells into CSCs.
Vibrio parahaemolyticus
is a halophilic bacterium found in the marine environment. Outbreaks of gastroenteritis resulting from seafood poisoning by these pathogens have risen over the past 2 decades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.