Natural fiber composites (NFCs) also termed as biocomposites offer an alternative to the existing synthetic fiber composites, due to their advantages such as abundance in nature, relatively low cost, lightweight, high strength-to-weight ratio, and most importantly their environmental aspects such as biodegradability, renewability, recyclability, and sustainability. Researchers are investigating in depth the properties of NFC to identify their reliability and accessibility for being involved in aircrafts, automotive, marine, sports’ equipment, and other engineering fields. Modeling and simulation (M&S) of NFCs is a valuable method that contributes in enhancing the design and performance of natural fibers composite. Recently many researchers have applied finite element analysis to analyze NFCs’ characteristics. This article aims to present a comprehensive review on recent developments in M&S of NFCs through classifying the research according to the analysis type, NFC type, model type, simulation platform and parameters, and research outcomes, shedding the light on the main applicable theories and methods in this area, aiming to let more experts know the current research status and also provide some guidance for relevant researches.
Natural fiber composites (NFCs) are an evolving area in polymer sciences. Fibers extracted from natural sources hold a wide set of advantages such as negligible cost, significant mechanical characteristics, low density, high strength-to-weight ratio, environmental friendliness, recyclability, etc. Luffa cylindrica, also termed luffa gourd or luffa sponge, is a natural fiber that has a solid potential to replace synthetic fibers in composite materials in diverse applications like vibration isolation, sound absorption, packaging, etc. Recently, many researches have involved luffa fibers as a reinforcement in the development of NFC, aiming to investigate their performance in selected matrices as well as the behavior of the end NFC. This paper presents a review on recent developments in luffa natural fiber composites. Physical, morphological, mechanical, thermal, electrical, and acoustic properties of luffa NFCs are investigated, categorized, and compared, taking into consideration selected matrices as well as the size, volume fraction, and treatments of fibers. Although luffa natural fiber composites have revealed promising properties, the addition of these natural fibers increases water absorption. Moreover, chemical treatments with different agents such as sodium hydroxide (NaOH) and benzoyl can remarkably enhance the surface area of luffa fibers, remove undesirable impurities, and reduce water uptake, thereby improving their overall characteristics. Hybridization of luffa NFC with other natural or synthetic fibers, e.g., glass, carbon, ceramic, flax, jute, etc., can enhance the properties of the end composite material. However, luffa fibers have exhibited a profuse compatibility with epoxy matrix.
This paper presents an analysis on the elastic characteristics of luffa and palm natural fiber composites (NFC) with epoxy and ecopoxy matrixes, taking into account the impact of fiber volume fractions. Furthermore, longitudinal modulus, transverse modulus, shear modulus, and Poisson's ratio were predicted using representative volume elements (RVEs) with chopped random and unidirectional fiber arrangements. However, analytical approaches such as rule of mixture, Chamis, Halpin–Tsai, and Nielsen were considered for validating and comparing the findings of finite element analyses. Hence, it was found that increasing fiber volume fraction increased the elastic properties of palm/epoxy, palm/ecopoxy, and luffa/epoxy NFCs, but decreased that of luffa/ecopoxy NFC. Addition of palm fibers in ecopoxy and epoxy had stronger effect than luffa on enhancing the elastic properties of the final structure. However, greatest elastic characteristics observed through analytical and numerical models were obtained for ecopoxy matrix with 0.5 palm fibers. A strong agreement was observed between the results obtained from analytical approaches and RVE unidirectional model. Chamis model exhibited higher outcomes compared to the considered analytical techniques, while Halpin–Tsai model showed the least values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.