Jagung merupakan komponen terpenting pakan pabrikan di dunia, terutama di daerah tropis. Fluktuasi harga produk pertanian akan mengakibatkan ikut berfluktuasinya pendapatan yang diterima oleh petani dari hasil produksi pertanian mereka. Salah satu upaya untuk mengantisipasi terjadinya fluktuasi harga adalah dengan melakukan peramalan harga. Peramalan harga dimaksudkan untuk melakukan prakiraan/prediksi harga masa depan dalam kurun waktu tertentu, dengan hasil keluaran berupa harga masa depan. metode KNN dapat digunakan untuk memprediksi harga komoditi. Hasil eksperiment yang telah dilakukan peneliti menunjukkan bahwa algoritma K-NN berbasis Particle Swarm Optimazation lebih baik dibandingkan dengan algoritma K-NN tanpa fitur seleksi. Berdasarkan hasil penelitian nilai RMSE terendah terdapat pada K-Nearest Neighbor berbasis Particle Swarm Optimazation untuk data jagung dengan variabel periode 4 parameter k 7 nilai population 5 Max Of Generation 40 dengan nilai RMSE 0,06
One obstacle of the default payment is the lack of analysis in the new customer acceptance process which is only reviewed from the form provided at registration, as for the purpose of this study to find out the highest accuracy results from the comparison of Naïve Bayes, SVM and K-NN Algorithms. It can be seen that the Naïve Bayes algorithm which has the highest accuracy value is 96%, while the K-Neural Network algorithm has the highest accuracy at K = 3 which is 92%, while Support Vector Machine only gets accuracy of 66%. The ROC Curve results show that Naïve Bayes achieved the best AUC value of 0.99. Comparison between data mining classification algorithms namely Naïve Bayes, K-Neural Network and Support Vector Machine for predicting smooth payment using multivariate data types, Naïve Bayes method is an accurate algorithm and this method is also very dominant towards other methods. Based on Accuracy, AUC and T-tests this method falls into the best classification category.
Meningkatnya volume produksi jagung yang diperdagangkan dan kecenderungan harga jagung dipasaran menuntut kebijakan pemerintah dalam mengendalikan stabilasi harga jagung. Sehingga pemerintah kesulitan dalam menentukan atau memprediksi harga komoditi yang akan datang, namun pada penelitian ini hanya fokus pada beberapa algoritma klasifikasi untuk mengetahui algoritma apakah yang mempunyai tingkat akurasi tertinggi dalam hal prediksi harga jagung sehingga dapat digunakan dalam melakukan prediksi harga beberapa hari kedepannya. Dalam data mining ada beberapa algoritma klasifikasi yang dapat digunakan, seperti K-Neural Network, Artificial Neural Network, Naïve Bayes, Regresi Linear, C-45 dll, namun pada penelitian ini hanya fokus pada dua metode saja yaitu Naïve Bayes dan K- Neural Network. Berdasarkan hasil penelitian yang dilakukan metode K-nn merupakan metode yang sangat bagus atau baik dalam melakukan prediksi ataupun klasifikasi, hala ini dapat dilihat dari hasil RMSE yang di hasilkan yaitu 0,05, metode ini mampu menghasilkan nilai terbaik walaupun tanpa adanya penambahan metode lain seperti forward selection, sementara itu untuk naïve bayes metode ini juga merupakan metode terbaik dalam melakukan prediksi ataupun klasifikasi, akan tetapi naïve bayes mempunyai beberapa kekurangan apabila digunakan untuk type data univariate ataupun numerical. Penambahan forward selection kepada pengolahan data dapat membantu menghasilkan akurasi yang baik pula. Walaupun tanpa forward selection K-NN dan Naïve bayes merupakan metode komputasi yang sangat baik dalam prediksi ataupun klasifikasi. Kata kunci: Harga Jagung, Komparasi Metode, K-Neural Network, Naïve bayes, forward selection
Kakao merupakan komoditas yang diperdagangkan yang memiliki peluang untuk berkembang dan dapat berkembang serta menambah devisa negara. Tanaman kakao terserang berbagai hama dan penyakit, Hama dan penyakit tersebut dapat dilihat dari gejala yang ditimbulkannya, namun untuk mengetahui secara pasti jenis hama dan penyakit yang menyerang kakao diperlukan tenaga ahli / ahli pertanian. Sedangkan tenaga ahli pertanian yang jumlahnya terbatas dan tidak dapat sekaligus menyelesaikan permasalahan petani, sehingga diperlukan suatu aplikasi dengan kemampuan ahli yang berisi keahlian ahli pertanian tentang penyakit dan gejala tanaman kakao. Pada penelitian ini dirancang aplikasi diagnostik dengan menggunakan metode kepastian Certainty Factor dan metode inferensi Backward Chaining, dengan bantuan bahasa pemrograman PHP (PHP: Hypertext Preprocessor) dan Basi Data MySQL. Aplikasi ini dirancang untuk membantu petani dalam mendiagnosis penyakit tanaman kakao. Kata kunci: Certainty Factor, Hama dan Penyakit, Tanaman Kakao
The importance of the availability of blood at PMI, it is expected that PMI always maintains the amount of blood supply to meet the need for blood transfusions. Prediction of blood supply is needed to overcome problems related to bloodstock supply at PMI Gorontalo. The application of predicting the number of blood requests with the K-Nearest Neighbor Algorithm can be done to overcome the existing problems. K-NN is a non-parametric algorithm that can be used for classification and regression. The last few decades have been used in prediction cases, but the K-NN algorithm is better if feature selection is applied in selecting features that are not relevant to the model, the feature selection used in this study is Backward Selection. This study aims to determine the error value in predicting the number of requests for blood at the PMI in Gorontalo City. Meanwhile, the purpose of this research is to find the error value of the K-Nearest Neighbor Algorithm and Feature Selection which can be used as a reference for PMI in making policies to make various efforts to maintainbloodstockk in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.