Titanium dioxide (TiO2) is an antimicrobial agent which is considered of potential value in inhibiting the growth of multiple bacteria. Klebsiella pneumonia and Haemophilus influenza are two of the most common respiratory infection pathogens, and are the most. Klebsiella pneumonia causes fatal meningitis, while Haemophilus influenza causes mortality even in younger patients. Both are associated with bacteremia and mortality. The purpose of this study was to test a new antibacterial material, namely nanotitania extract combined with 0.03% silver that was developed at Universiti Malaysia Sabah (UMS) and tested against K. pneumonia and H. influenza. The nanoparticles were synthesized through a modified hydrothermal process, combined with molten salt and proven to have excellent crystallinity, with the band-gap energy falling in the visible light spectrum. The nanoparticle extract was tested using a macro-dilutional method, which involved combining it with 0.03% silver solution during the process of nanoparticle synthesis and then introducing it to the bacteria. A positive control containing the bacteria minus the nanoparticles extract was also prepared. 25 mg/mL, 12.5 mg/mL, and 6.25 mg/mL concentrations of the samples were produced using the macro dilution method. After adding the bacteria to multiple concentrations of nanoparticle extract, the suspensions were incubated for 24 h at a temperature of 37 °C. The suspensions were then spread on Mueller-Hinton agar (K. pneumonia) and chocolate blood agar (H. influenza), where the growth of bacteria was observed after 24 h. Nanoparticle extract in combination with silver at 0.03% was proven to have potential as an antimicrobial agent as it was able to inhibit H. influenza at all concentrations. Furthermore, it was also shown to be capable of inhibiting K. pneumonia at concentrations of 25 mg/mL and 50 mg/mL. In conclusion, the nanoparticle extract, when tested using a macro-dilutional method, displayed antimicrobial properties which were proven effective against the growth of both K. pneumonia and H. influenza.
Background: Betel quid chewing is more common among the older generation in rural areas of Malaysia. Oral cancer in Asia has been associated with the habit of chewing betel quid and areca nut. Objective: This study aims to investigate the cytotoxic effects of betel quid and areca nut extracts on the fibroblast (L929), mouth-ordinary-epithelium 1 (MOE1) and oral squamous cell carcinoma (HSC-2) cell lines. Methods: L929, MOE1 and HSC-2 cells were treated with 0.1, 0.2 and 0.4 g/ml of betel quid and areca nut extracts for 24, 48 and 72 h. MTT assay was performed to assess the cell viability. Results: Both extracts, regardless of concentration, significantly reduced the cell viability of L929 compared with the control (P<0.05). Cell viability of MOE1 was significantly enhanced by all betel quid concentrations compared with the control (P<0.05). By contrast, 0.4 g/ml of areca nut extract significantly reduced the cell viability of MOE1 at 48 and 72 h of incubation. Cell viability of HSC-2 was significantly lowered by all areca nut extracts, but 0.4 g/ml of betel quid significantly increased the cell viability of HSC-2 (P<0.05). Conclusion: Areca nut extract is cytotoxic to L929 and HSC-2, whereas the lower concentrations of areca nut extract significantly increased the cell viability of MOE1 compared to the higher concentration and control group. Although betel quid extract is cytotoxic to L929, the same effect is not observed in MOE1 and HSC-2 cell lines. Further investigations are needed to clarify the mechanism of action.
Background: This research was planned to search for a potential of modified hydrothermal nanotitania extract in inhibiting the growth of bacteria commonly known in medical field. It is also aims to test this substance against common medical bacteria,Escherichia coli. Materials and methods: In this test, suspension of modified hydrothermal nanotitania extract (together with 0.01%, 0.03% and 0.05% silver) and undoping (positive control contains TiO2 and no silver) were prepared by mixing of TiO2 in Mueller Hinton Broth (MH) agar. The platecontaining the bacteria and TiO2 were observed after 24 hour, 48 hours and 72 hours incubation at 37oC for any growth of bacteria. Results: There was no growth of Escherichia coliin the plates containing the bacteria and modified hydrothermal nanotitania extract except in the control media. Conclusions: The finding suggested the modified hydrothermal nanotitania extractioninterfered the growth of Escherichia coli. Bangladesh Journal of Medical Science Vol.19(4) 2020 p.705-709
IntroductionThe nanoparticle has become a part of world industry. This substance has been proven as potentially beneficial for its usage as a catalyst and semi-conductor due to its high surface area and the effects of the quantum size effect. It exhibits potential characteristics and would be applied in a wider scope of usage compared to bulk particles because the smaller the size of the particles, the more room for the extent of their usage. Nano titanium dioxide application as semi-conductors together with a catalyst is highly attributed to its high photochemical stability and ability to be produced at a low-cost. The consequence of this – exposure of nano titanium dioxide particles to humans – raises concerns regarding health and safety. Therefore, this research action works designed to offer a thorough analysis of toxicology impacts produced by our own synthesis modified hydrothermal in vitro experiments.Material and methodsOur nanotitania extraction with 0.05% silver was tested for its toxicity against L929 mouse cells. The cytotoxicity effect of nanotitania extract was evaluated by MTT assay. Cell viability (% CV) was calculated using a formula.ResultsThere are non-cytotoxicity activity of 0.05% nanotitania at concentrations 1.5, 3.1, 6.3, 12.5, and 25 mg/ml on L929 cell lines except at concentration 50 and 100 mg/ml. The result was related to the optical density reading.ConclusionsThere is no cytotoxic effect of nanotitania extraction with 0.05% silver in the growth inhibition test with L929 mouse with the exception of the 100 mg/ml extract.
Candida albicans is a pathogenic yeast typically associated with diseases such as HIV, AIDS, and other immunocompromised conditions. It is rarely the cause of fatalities and is commonly treated with drugs administered orally or intravenously. In this experiment, Candida albicans was tested with an extract of modified hydrothermal nanotitania to identify whether the material is capable of inhibiting the organism’s growth. The extract was mixed with the Candida albicans in a culture media preparation to determine whether the organisms were able to grow. The test showed that modified hydrothermal nanotitania inhibits the growth of this organism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.