Missing data in datasets remain as a difficulty in terms of data analysis in various research fields, especially in the medical field, as it affects the treatment and diagnosis that the patient should receive. In this research, Fuzzy c-means (FCM) are used to impute the missing data. However, like in most data imputation methods, FCM do not consider the presence of irrelevant features. Irrelevant features can increase the computational time of the imputation process and decrease the accuracy of the prediction. Feature selection techniques can alleviate this problem by selecting the most relevant features and reducing the dataset size. Fuzzy principal component analysis (FPCA) is used as the feature selection method in this study as it considers the presence of outliers compared to classical PCA as outliers are the main reason some features renders irrelevant. Therefore, an improved hybrid imputation model of FPCA-Support vector machines-FCM (FPCA-SVM-FCM) has been proposed and employed in this study. The efficiency of the proposed model is investigated on one dataset which is Pima Indians Diabetes dataset. Experimental results showed that the proposed hybrid imputation model is better than the existing methods by producing a more accurate estimation in terms of accuracy, RMSE and MAE. The proposed method was also validated by using Wilcoxon rank sum and Theil's U test and obtained good results compared to SVM-FCM. Therefore, it can be used as an alternative tool for handling missing data in order to obtain a better quality dataset.
Breast cancer is the leading cause of death among women in the world and early detection can increase the chance of survival for the patients. However, expert system and machine learning diagnosis are burdened with the presence of irrelevant data and noise which can reduce the accuracy of prediction and increase computational time. In this paper, Fuzzy Principle Component Analysis (FPCA) and Support Vector Machines (SVM) are proposed for the classification of breast cancer dataset. Experimental results on public breast cancer dataset show that the proposed method FPCA-SVM outperformed the benchmark models in terms of accuracy, specificity, and sensitivity and AUC value. The proposed model can assist doctors and medical practitioners for an early detection of breast cancer.
In Malaysia, Colorectal Cancer (CRC) is one of the most common cancers that occur in both men and women. Early detection is very crucial and it can significantly increase the rate of survival for the patients and if left untreated can lead to death. With the lack of high-quality CRC data, expert systems and machine learning analysis are burdened with the presence of irrelevant features, outliers, and noise. This can reduce the classification accuracy for data analysis. Accordingly, it is essential to find a reliable feature selection method that can identify and remove any irrelevant feature while being resistant to noise and outliers. In this paper, Fuzzy Principal Component Analysis (FPCA) was tested for the classification of Malaysian’s CRC dataset. With the utilization of fuzzy membership in FPCA, the experimental results showed that the proposed method produces higher accuracy compared to PCA and SVM by almost 2% and 5% respectively. Empirical results showed that FPCA is a reliable feature selection method that can find the most informative features in the CRC dataset that could assist medical practitioners in making an informed decision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.