The world of materials is an exciting and challenging field of research since it has always played a dominant role in the evolution of human civilization. The demands from aerospace, defence, automotive and industrial branches on more advanced and innovative materials has led to the development of a new generation of materials with much better performance and capabilities than the existing conventional structural and functional materials. As a result, the era of smart materials has started. Smart materials can change their physical properties in response to a specific stimulus input. However, there is still a blurry image over the types and potential applications of smart materials. The objective of this paper is to define the field of smart materials and structures, together with its current status and potential benefits. However, more focus will be devoted to piezoelectric materials and results are presented and discussed. Finally, and in order to demonstrate the characteristics of one class of smart materials, two numerical examples are proposed and results are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.