Proteoglycans are important components of cell plasma membranes and extracellular matrices of connective tissues. They consist of glycosaminoglycan chains attached to a core protein via a tetrasaccharide linkage, whereby the addition of the third residue is catalyzed by galactosyltransferase II (β3GalT6), encoded by B3GALT6. Homozygosity mapping and candidate gene sequence analysis in three independent families, presenting a severe autosomal-recessive connective tissue disorder characterized by skin fragility, delayed wound healing, joint hyperlaxity and contractures, muscle hypotonia, intellectual disability, and a spondyloepimetaphyseal dysplasia with bone fragility and severe kyphoscoliosis, identified biallelic B3GALT6 mutations, including homozygous missense mutations in family 1 (c.619G>C [p.Asp207His]) and family 3 (c.649G>A [p.Gly217Ser]) and compound heterozygous mutations in family 2 (c.323_344del [p.Ala108Glyfs(∗)163], c.619G>C [p.Asp207His]). The phenotype overlaps with several recessive Ehlers-Danlos variants and spondyloepimetaphyseal dysplasia with joint hyperlaxity. Affected individuals' fibroblasts exhibited a large decrease in ability to prime glycosaminoglycan synthesis together with impaired glycanation of the small chondroitin/dermatan sulfate proteoglycan decorin, confirming β3GalT6 loss of function. Dermal electron microcopy disclosed abnormalities in collagen fibril organization, in line with the important regulatory role of decorin in this process. A strong reduction in heparan sulfate level was also observed, indicating that β3GalT6 deficiency alters synthesis of both main types of glycosaminoglycans. In vitro wound healing assay revealed a significant delay in fibroblasts from two index individuals, pointing to a role for glycosaminoglycan defect in impaired wound repair in vivo. Our study emphasizes a crucial role for β3GalT6 in multiple major developmental and pathophysiological processes.
Neu-Laxova syndrome (NLS) is a rare autosomal-recessive disorder characterized by a recognizable pattern of severe malformations leading to prenatal or early postnatal lethality. Homozygous mutations in PHGDH, a gene involved in the first and limiting step in L-serine biosynthesis, were recently identified as the cause of the disease in three families. By studying a cohort of 12 unrelated families affected by NLS, we provide evidence that NLS is genetically heterogeneous and can be caused by mutations in all three genes encoding enzymes of the L-serine biosynthesis pathway. Consistent with recently reported findings, we could identify PHGDH missense mutations in three unrelated families of our cohort. Furthermore, we mapped an overlapping homozygous chromosome 9 region containing PSAT1 in four consanguineous families. This gene encodes phosphoserine aminotransferase, the enzyme for the second step in L-serine biosynthesis. We identified six families with three different missense and frameshift PSAT1 mutations fully segregating with the disease. In another family, we discovered a homozygous frameshift mutation in PSPH, the gene encoding phosphoserine phosphatase, which catalyzes the last step of L-serine biosynthesis. Interestingly, all three identified genes have been previously implicated in serine-deficiency disorders, characterized by variable neurological manifestations. Our findings expand our understanding of NLS as a disorder of the L-serine biosynthesis pathway and suggest that NLS represents the severe end of serine-deficiency disorders, demonstrating that certain complex syndromes characterized by early lethality could indeed be the extreme end of the phenotypic spectrum of already known disorders.
Pompe disease is an autosomal recessive lysosomal glycogen storage disorder, characterized by progressive muscle weakness. Deficiency of acid α-glucosidase (EC; 3.2.1.20/3) can be caused by numerous pathogenic variants in the GAA gene. The Pompe Disease Mutation Database at http://www.pompecenter.nl aims to list all variants and their effect. This update reports on 94 variants. We examined 35 novel and 34 known mutations by site-directed mutagenesis and transient expression in COS-7 cells or HEK293T cells. Each of these mutations was given a severity rating using a previously published system, based on the level of acid α-glucosidase activity in medium and transfected cells and on the quantity and quality of the different molecular mass species in the posttranslational modification and transport of acid α-glucosidase. This approach enabled to classify 55 missense mutations as pathogenic and 13 as likely nonpathogenic. Based on their nature and the use of in silico analysis (Alamut® software), 12 of the additional 25 novel mutations were predicted to be pathogenic including 4 splicing mutations, 6 mutations leading to frameshift, and 2 point mutations causing stop codons. Seven of the additional mutations were considered nonpathogenic (4 silent and 3 occurring in intron regions), and 6 are still under investigation.
Serine biosynthesis disorders comprise a spectrum of very rare autosomal recessive inborn errors of metabolism with wide phenotypic variability. Neu–Laxova syndrome represents the most severe expression and is characterized by multiple congenital anomalies and pre‐ or perinatal lethality. Here, we present the mutation spectrum and a detailed phenotypic analysis in 15 unrelated families with severe types of serine biosynthesis disorders. We identified likely disease‐causing variants in the PHGDH and PSAT1 genes, several of which have not been reported previously. Phenotype analysis and a comprehensive review of the literature corroborates the evidence that serine biosynthesis disorders represent a continuum with varying degrees of phenotypic expression and suggest that even gradual differences at the severe end of the spectrum may be correlated with particular genotypes. We postulate that the individual residual enzyme activity of mutant proteins is the major determinant of the phenotypic variability, but further functional studies are needed to explore effects at the enzyme protein level.
Pyrroline-5-carboxylate reductase 1 (PYCR1) catalyzes the last step in proline synthesis. Deficiency of PYCR1, caused by a defect in PYCR1, was recently described in patients with cutis laxa, intrauterine growth retardation, developmental dysplasia of the hips and mental retardation. In this paper, we describe additional six patients (ages ranging from 4 months to 55 years) from four Iranian families with clinical manifestations of a wrinkly skin disorder. All patients have distinct facial features comprising triangular face, loss of adipose tissue and thin pointed nose. Additional features are short stature, wrinkling over dorsum of hand and feet, visible veins over the chest and hyperextensible joints. Three of the patients from a large consanguineous family do not have mental retardation, while the remaining three patients from three unrelated families have mental and developmental delay. Mutation analysis revealed the presence of disease-causing variants in PYCR1, including a novel deletion of the entire PYCR1 gene in one family, and in each of the other patients the homozygous missense mutations c.616G > A (p.Gly206Arg), c.89T > A (p.Ile30Lys) and c.572G > A (p.Gly191Glu) respectively, the latter two of which are novel. Light- and electron microscopy investigations of skin biopsies showed smaller and fragmented elastic fibres, abnormal morphology of the mitochondria and their cristae, and slightly abnormal collagen fibril diameters with irregular outline and variable size. In conclusion, this study adds information on the natural course of PYCR1 deficiency and sheds light on the pathophysiology of this disorder. However, the exact pathogenesis of this new disorder and the role of proline in the development of the clinical phenotype remain to be fully explained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.