We designed and demonstrated a double-peak one-dimensional photonic
crystal (1D PhC) cavity device by integrating two 1D PhCs cavities in
a parallel configuration. The device design is proposed so that it can
be used for bio-sensing purposes and has a self-compensation ability
to reduce the measurement error caused by the change of the
surrounding temperature. By combining two light resonances, two
resonance peaks are obtained. The peak’s separation, which gives the
initial value for a sensing system, can be controlled by varying the
cavity length difference (Δc) between the first and second 1D PhCs in
parallel. Then, by making one arm of the device as the reference arm
and the other arm as the sensing arm, the temperature
self-compensation device can be realized. The design and simulation of
this device are done by using Lumerical software, which are Lumerical
MODE, Lumerical finite-difference time-domain, and Lumerical
Interconnect. Electron-beam-lithography and deep reactive-ion-etching
processes were used for device fabrication. The experimental results
show the controllable peaks’ separation, which solves the double-peak
requirement for a temperature self-compensated bio-sensor design.
The properties of light and its interaction with biological analytes have made it possible to design sophisticated and reliable optical-based biomedical sensors. In this paper, we report the simulation, design, and fabrication of microring resonator (MRR)-based sensors for the detection of diabetic glucose levels. Electron Beam Lithography (EBL) with 1:1 hydrogen silsesquioxane (HSQ) negative tone resist were used to fabricate MRR on a Silicon-on-Insulator (SOI) platform. Scanning Electron Microscopy (SEM) was then used to characterize the morphology of the MRR device. The full-width at half-maximum (FWHM) and quality factors of MRR were obtained by using a tunable laser source (TLS) and optical spectrum analyzer (OSA). In this paper, the three-dimensional Finite Difference Time Domain (3D FDTD) approach has been used to simulate the proposed design. The simulation results show an accurate approximation with the experimental results. Next, the sensitivity of MRR-based sensors to detect glucose levels is obtained. The sensitivity value for glucose level detection in the range 0% to 18% is 69.44 nm/RIU. This proved that our MRR design has a great potential as a sensor to detect diabetic glucose levels.
Increasing the quality factor (Q-factor) of an optical resonator device has been a research focus utilized in various applications. Higher Q-factor means light is confined in a longer time which will produce a sharper peak and higher transmission. In this paper, we introduce a novel technique to further increase the Q-factor of a one-dimensional photonic crystal (1D PhC) cavity device by using an end loop-mirror (ELM). The technique utilizes and recycles the transmitted light from the conventional 1D PhC cavity design. The design has been proven to work by using the 2.5D FDTD simulation with Lumerical FDTD and MODE software. By using the ELM technique, the Q-factor of a 1D PhC design has been shown to increase up to 79.53% from the initial Q value without the ELM. The experimental result shows that the device is measurable by adding a Y-branch component to the one-port structure and able to get a high Q result. This novel design technique can be combined with any high Q-factor and very high Q-factor designs to increase more Q-factor values of photonic crystal cavity devices or any other suitable optical resonator devices.
Increasing the quality factor (Q) of an optical resonator device has been a research focus to be utilized in various applications. Higher Q-factor means light is confined in a longer time which will produce a shaper peak and higher transmission. In this paper, we introduce a novel technique to increase further the Q-factor of a one-dimensional photonic crystal (1D PhC) cavity device by using an end loop-mirror (ELM). The technique utilizes and recycles the light transmission from the conventional 1D PhC cavity design. The design has been proved to work by using the 2.5D FDTD simulation with Lumerical FDTD and MODE softwares. By using the ELM technique, the Q- factor of a 1D PhC design has been shown to have increased up to 79.53 % from the initial Q value without the ELM. This novel design technique can be combined with any high Q-factor and very high Q-factor designs to increase more the Q-factor value of a photonic crystal cavity devices or any other suitable optical resonator devices. The experimental result shows that the device is measurable by adding a Y-branch component to the one-port structure and able to get the high-Q result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.