In this paper, Sensorless Permanent Magnet Synchronous Motor (PMSM) using Extended Kalman Filter (EKF) is presented. The previous PMSM drive uses a sensor to measure the motor’s speed. Then the idea is to replace the sensor by using sensorless drives based on the observer. For the conventional observer, it’s only good for low current and low-speed applications. Moreover, it is hard to detect the phase voltage due to the non-existence of neutral wire. Therefore, this project proposes sensorless control using an EKF. This method provides an optional estimation algorithm for the non-linear system that can produce a fast and accurate estimation of state variables. The accurate estimation will reduce the noise and ripple of the system. Additionally, the EKF do not require the information of mechanical parameters and the initial position of the rotor, making the construction is easy and simple. In this paper, the fundamental of the EKF algorithm is explained and the simulation results for different speeds and loads are presented. The noise reduction test is also conducted to measure the flux current with and without the filter. The simulation study is achieved using MATLAB/Simulink to verify the effectiveness of the proposed method. The results of the simulation show that the sensorless PMSM drives using EKF have lower overshoot and faster rise time during start-up conditions and have lower undershoot during the loaded condition. It also can be concluded that the proposed sensorless PMSM drive using EKF has good speed control accuracy and can reduce the current noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.