The automotive heating and ventilating air condition (HVAC) system, when vibrating, can generate various types of noises such as humming, hissing, clicking and air-rushes. These noises can be characterised to determine their root causes. In this study, the humming-type noise is taken into consideration whereby the noise and vibration characteristics are measured from various HVAC components such as power steering pump, compressor and air conditional pipe. Four types of measurement sensors were used in this study - tachometer for rpm tracking; accelerometer for the vibration microphone for the noise; and sound camera for the visualization measurement. Two types of operating conditions were taken into consideration - they were “idle” (850 rpm) and “running” (850-1400 rpm) conditions. A constant blower speed was applied for both conditions. The result shows that the humming noises can be determined at the frequency range of 300-350 Hz and 150-250 Hz for both idle and running conditions, respectively. The vibration of the power steering pump shows the worst acceleration of 1.8 m/s2 at the frequency range of 150-250 Hz, compared to the compressor and air conditional pipe. This result was validated with the 3D colour order and sound camera analyses, in which the humming noise colour mapping shows dominance in this frequency range.
In this study, the characteristics of clicking-type noise and vibration occurring in the automotive heating, ventilation and air conditional (HVAC) systems are investigated. A lab-scale model of HVAC system is developed, and validation is carried out with a vehicle system. A fixed blower speed of 1 (at an airflow of 2.53 m/s) with alternated air conditional (AC) was implied in this study. Three different sensors namely as tachometer, accelerometer, and microphone were used to measure and prove the existing noise in the HVAC system. The study inferred that the compressor contributed significantly to the total vibration and noise in the HVAC system. Other components such as AC pipe, evaporator, and thermal expansion valve (TXV) also contributed to a slight extent. The clicking noise was observed in the operating frequency range of 200 ~ 300 Hz. This noise and vibration issues are partly influenced by the running conditions of the AC and the effect was significant when the AC was turned on. The validation of the findings in the model shows a good agreement with the results obtained in the vehicle system, whereby the clicking noise and vibration can be observed at a similar frequency range.
Noises such as hissing, humming, air-rush and compressor engagement are the common type of noises that can be induced from the automotive heating and ventilating air conditional (HVAC) system. These noises are basically generated from the effects of vibrational HVAC components. Due to this, the root cause of the noises has to be investigated for any implementation of solution. In this study, the hissing-type of noise is taken into consideration whereby the noise and vibration are measured from various HVAC components such as Evaporator Inlet and Outlet and Thermal Expansion Valve (TXV). Three types of measurement sensors are used in this study which is tri-axial accelerometer for the vibration, tachometer for the engine rpm tracking and microphone for the noise measurement. Two types of operating conditions are taken into consideration, when engine running at 850 rpm (idle) and 850-3000 rpm (tracking) conditions and a constant blower speed is applied for both conditions. the result shows that, the hissing type of noise is determined at the frequency range of 4500-5000 Hz for the both idle and running conditions, whereby the vibration at the Evaporator Inlet is the most significant compared to the Evaporator Core and TVX components. the vibration of the Evaporator Inlet shows the drastic vibration increment between 1000-1500 rpm and getting worse towards 3000 rpm. This result is validated with the 3D colour of noise waterfall analysis, whereby the hissing noise shows the dominant result in the frequency range of 4500-5000 Hz.
Petrol driven motorboat engine consisted of direct handle-engine mounting mechanism which exposed the operators to the high level of vibration and can lead to the Hand-arm Vibration syndrome (HAVs). The transmitted vibration from the engine to the handle with natural frequency excitation making the transmitted vibration worsen. This study is focusing on the vibration analysis of the 3.3 HP motorboat engine and the transmitted vibration to the operator handle in specific directions and frequency ranges. A lab-scale experimental rig with motorboat engine is set-up to represent the actual operation of the motorboat engine. Experimental Modal Analysis (EMA) is conducted at the motorboat handle to obtain the natural frequencies in y and z axis directions. Two levels of engine speed (Speed 1: Low and Speed 2: High) are taken into consideration for the vibration measurement of both engine and handle in x, y and z axis directions. From this study, the natural frequencies of the handle are determined within 75 – 80 Hz. For the vibration spectral measurement, the engine has produced high vibration in x and y axis directions, whereby the transmitted vibration to the handle is worst in y axis direction. At Speed 1, the engine excited the vibration within frequency range of 45 – 50 Hz while by increasing the engine to Speed 2, the vibration peak shifted to 95 – 100 Hz with higher vibration amplitude. In overall, the vibration transmissibility at the handle are significant between the frequency range of 0 – 100 Hz (above 1) which can result the HAVs among the operators if no necessary action been taken.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.