This paper presents a methodology to size Standalone Hybrid Renewable Energy System (SHRES) which combines solar PV, wind turbine (WT) and battery energy storage (BES) for application in rural areas. These sources are integrated via an AC bus to support the load demand. SHRES is simulated under varying load demand, solar radiation, temperature and wind speed obtained from the Malaysian Meteorological Department. A Multi-objective Optimization using Non-dominate Sorting Genetic Algorithm (NSGA-II) was utilized to determine the best sizing of PV / wind turbine / battery, and minimize Cost of Energy (COE) and Loss of Power Supply Probability (LPSP). The results show that the NSGAII optimization of the model is able to determine the best techno-economic sizing for the suggested location. For the case study, the optimum COE was 0.1099 (USD/kWh) and LPSP was 0.0865. The proposed tool can be used to size the SHRES for rural electrification and enhance energy access within remote locations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.