Abstract-When sensors of different coexisting wireless body area networks (WBANs) transmit at the same time using the same channel, a co-channel interference is experienced and hence the performance of the involved WBANs may be degraded. In this paper, we exploit the 16 channels available in the 2.4 GHz international band of ZIGBEE, and propose a distributed scheme that avoids interference through predictable channel hopping based on Latin rectangles, namely, CHIM. In the proposed CHIM scheme, each WBAN's coordinator picks a Latin rectangle whose rows are ZIGBEE channels and columns are sensor IDs. Based on the Latin rectangle of the individual WBAN, each sensor is allocated a backup time-slot and a channel to use if it experiences interference such that collisions among different transmissions of coexisting WBANs are minimized. We further present a mathematical analysis that derives the collision probability of each sensor's transmission in the network. In addition, the efficiency of CHIM in terms of transmission delay and energy consumption minimization are validated by simulations.
Abstract-In this paper, we propose a distributed multi-hop interference avoidance algorithm, namely, IAA to avoid co-channel interference inside a wireless body area network (WBAN). Our proposal adopts carrier sense multiple access with collision avoidance (CSMA/CA) between sources and relays and a flexible time division multiple access (FTDMA) between relays and coordinator. The proposed scheme enables low interfering nodes to transmit their messages using base channel. Depending on suitable situations, high interfering nodes double their contention windows (CW) and probably use switched orthogonal channel. Simulation results show that proposed scheme has far better minimum SINR (12dB improvement) and longer energy lifetime than other schemes (power control and opportunistic relaying). Additionally, we validate our proposal in a theoretical analysis and also propose a probabilistic approach to prove the outage probability can be effectively reduced to the minimal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.